Publications from AI2ES


By AI2ES participants and members

2024

  • Chase, R.J., A. McGovern, C.R. Homeyer, P.J. Marinescu, C.K. Potvin (2024) Machine Learning Estimation of Maximum Vertical Velocity from Radar, Artificial Intelligence for the Earth Systems, 01 Apr 2024. https://doi.org/10.1175/AIES-D-23-0095.1
  • Earnest, B. L., A. McGovern, C. Karstens, and I. Jirak (2024) Part 1: Improving Wildfire Occurrence Prediction for CONUS Using Deep Learning and Fire Weather Variables. Artificial Intelligence for the Earth Systemshttps://doi.org/10.1175/AIES-D-23-0057.1
  • Earnest, B. L., A. McGovern, C. Karstens, and I. Jirak (2024) Part 1: Improving Wildfire Occurrence Prediction for CONUS Using Deep Learning and Fire Weather Variables. Artificial Intelligence for the Earth Systemshttps://doi.org/10.1175/AIES-D-23-0057.1
  • Earnest, B. L., A. McGovern, C. Karstens, and I. Jirak (2024) Part 2: Lessons Learned from Predicting Wildfire Occurrence for CONUS Using Deep Learning and Fire Weather Variables. Artificial Intelligence for the Earth Systems, https://doi.org/10.1175/AIES-D-23-0058.1
  • Flora, M. L., C. K. Potvin, A. McGovern, and S. Handler (2024) A Machine Learning Explainability Tutorial for Atmospheric Sciences. Artificial Intelligence for the Earth Systems, 3:1https://doi.org/10.1175/AIES-D-23-0018.1
  • Gaudet, L. C., K. J. Sulia, R. D. Torn, and N. P. Bassill, 2024: Verification of the Global Forecast System, North American Mesoscale Forecast System, and High-Resolution Rapid Refresh Model Near-Surface Forecasts by Use of the New York State Mesonet. Weather Forecasting, 39, 369–386, https://doi.org/10.1175/WAF-D-23-0094.1
  • Haynes, k., J. Stock, J. Dostalek, L. Grasso, C. Anderson, I. Ebert-Uphoff. (2024) Exploring the Use of Machine Learning to Improve Vertical Profiles of Temperature and Moisture. Artificial Intelligence for the Earth Systems, 3, e220090, https://doi.org/10.1175/AIES-D-22-0090.1
  • McGovern, A., A. Bostrom, M. McGraw, R. J. Chase, D. J. Gagne II, I. Ebert-Uphoff, K. Musgrave, A. Schumacher (2024) Identifying and Categorizing Bias in AI/ML for Earth Sciences. Bulletin of the American Meteorological Society. Volume 105:Issue 3. https://doi.org/10.1175/BAMS-D-23-0196.1 
  • McGovern, A., Ebert-Uphoff, I., Barnes, E.A., Bostrom, A., Cains, M.G., Davis, P., Demuth, J.L., Diochnos, D.I., Fagg, A.H., Tissot, P., Williams, J.K., Wirz. C.D. (2024). AI2ES: The NSF AI Institute for Research on Trustworthy AI for Weather, Climate, and Coastal Oceanography. AI Magazine. https://doi.org/10.1002/aaai.12160
  • McGovern, Amy, Philippe Tissot, and Ann Bostrom (2024) Developing trustworthy AI for weather and climate. Physics Today 1 January 2024; 77 (1): 26–31. https://doi.org/10.1063/PT.3.5379
  • Page, E., S.S.P. Shen, and R.C.J. Somerville, (2024) Can we do better at teaching mathematics to undergraduate atmospheric science students? Bulletin of the American Meteorological Societyhttps://doi.org/10.1175/BAMS-D-22-0245.1; NSF ExpandAI2ES Grant IIS2324008
  • Qiao, X., Chu, T., Krell, E., Tissot, P., Holland, S., Ahmed, M., & Smilovsky, D. (2024). Interpretation and Attribution of Coastal Land Subsidence: An InSAR and Machine Learning Perspective. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2024.3361391 
  • White, C.H., Ebert-Uphoff, I., Haynes, J.M. and Noh, Y.J., (2024). Super-Resolution of GOES-16 ABI Bands to a Common High Resolution with a Convolutional Neural Network. Artificial Intelligence for the Earth Systems. https://doi.org/10.1175/AIES-D-23-0065.1
  • White, M. C., Vicens-Miquel, M., Tissot, P., & Krell, E. (2024). A 10-Year Metocean Dataset for Laguna Madre, Texas, Including for the Study of Extreme Cold Events. Data in Brief, 52, 109828. https://doi.org/10.1016/j.dib.2023.109828 

2023

  • Bansal, A.S., Lee, Y., Hilburn, K. and Ebert-Uphoff, I. (2023) Leveraging spatiotemporal information in meteorological image sequences: From feature engineering to neural networks. Environmental Data Science, Volume 2:e 31. https://doi.org/10.1017/eds.2023.26
  • Bauer, Peter, Peter Dueben, Matthew Chantry, Francisco Doblas-Reyes, Torsten Hoefler, Amy McGovern & Bjorn Stevens. (2023) Deep learning and a changing economy in weather and climate prediction. Nature Reviews Earth and Environment. https://doi.org/10.1038/s43017-023-00468-z
  • Bostrom, A., Demuth, J., Wirz, C., Cains, M., Schumacher, A., Madlambayan, D., Bansal, A. S., Bearth, A., Chase, R., Crosman, K.M., Ebert-Uphoff, I., Gagne II, D.J., Guikema, S., Hoffman, R., Johnson, B.B., Kumler-Bonfanti, C., Lee, J.D., Lowe, A., McGovern, A., Przybylo, V., Radford, J., Roth, E., Sutter, C., Tissot, P., Roebber, P., Stewart, J.Q., White, M., & Williams, J.K. (2023). Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences. Risk Analysis, online first, https://doi.org/10.1111/risa.14245
  • Chaichitehrani, N. and R. He (2023) Investigation of ocean environmental variables and their variations associated with major Loop Current eddy-shedding events in the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography 105354. https://doi.org/10.1016/j.dsr2.2023.105354
  • Chase, R. J., D. R. Harrison, G. M. Lackmann, and A. McGovern (2023) A Machine Learning Tutorial for Operational Meteorology, Part II: Neural Networks and Deep Learning. Weather Forecasting, https://doi.org/10.1175/WAF-D-22-0187.1, in press.
  • Fan, D., S. J. Greybush, D. J. Gagne II, and E. E. Clothiaux (2023) Physically Explainable Deep Learning for Convective Initiation Nowcasting Using GOES-16 Satellite Observations. Artificial Intelligence for the Earth Systems, https://doi.org/10.1175/AIES-D-23-0098.1
  • Guilloteau, C. & Efi Foufoula-Georgiou, E., (2023) Life cycle of precipitating cloud systems from synergistic satellite observations: geostationary cloud tracking and GPM microwave measurements. Journal of Hydrometeorology, https://doi.org/10.1175/JHM-D-23-0185.1; NSF ExpandAI2ES Grant IIS2324008
  • Haynes, K., Lagerquist, R., McGraw, M., Musgrave, K. and Ebert-Uphoff, I. (2023) Creating and evaluating uncertainty estimates with neural networks for environmental-science applications. Artificial Intelligence for the Earth Systems, pp.1-58, Jan 2023. https://doi.org/10.1175/AIES-D-22-0061.1
  • Krell, E., Kamangir, H., Collins, W., King, S. A., & Tissot, P. (2023). Aggregation Strategies to Improve XAI for Geoscience Models that Use Correlated, High-Dimensional Rasters. Environmental Data Science, 2:e45. https://doi.org/10.1017/eds.2023.39
  • Lagerquist, R., D. Turner, I. Ebert-Uphoff, and J. Stewart (2023) Estimating Full Longwave and Shortwave Radiative Transfer with Neural Networks of Varying Complexity. Journal of Atmospheric and Oceanic Technology, Volume 40:Issue 11. https://doi.org/10.1175/JTECH-D-23-0012.1
  • Li, R., C. Guilloteau, P.E. Kirstetter and E. Foufoula-Georgiou, (2023) A new event-based error decomposition scheme for satellite precipitation products, Geophysical Research Letters, https://doi.org/10.1029/2023GL105343; NSF ExpandAI2ES Grant IIS2324008
  • Lopez-Gomez, I.; McGovern, A.;, Agrawal, S.; Hickey, J. (2023) Global extreme heat forecasting using neural weather models. Artificial Intelligence for the Earth Systems, Volume 2:Issue 1. https://doi.org/10.1175/AIES-D-22-0035.1
  • Mamalakis, Antonios, Elizabeth A. Barnes, and Imme Ebert-Uphoff. (2023) Carefully choose the baseline: Lessons learned from applying XAI attribution methods for regression tasks in geoscience. Artificial Intelligence for the Earth Systems, 2, no. 1: e220058, Jan 2023. https://doi.org/10.1175/AIES-D-22-0058.1
  • McGovern, A., Gagne, D.J., Wirz, C.D., Ebert-Uphoff, I., Bostrom, A., Rao, Y., Schumacher, A., Flora, M., Chase, R., Mamalakis, A. and McGraw, M. (2023) Trustworthy Artificial Intelligence for Environmental Sciences: An Innovative Approach for Summer School. Bulletin of the American Meteorological Society, Apr 2023. https://doi.org/10.1175/BAMS-D-22-0225.1
  • McGovern, A., R. J. Chase, M. Flora, D. J. Gagne, R. Lagerquist, C. K. Potvin, N. Snook, and E. Loken, (2023) A Review of Machine Learning for Convective Weather. Artificial Intelligence for the Earth Systems, https://doi.org/10.1175/AIES-D-22-0077.1, in press.
  • Murphy, Amanda M., C.R. Homeyer (2023) Comparison of Radar-Observed Tornadic and Nontornadic MCS Cells Using Probability-Matched Means, Journal of Applied Meteorology and Climatology, 01 Oct 2023. https://doi.org/10.1175/JAMC-D-23-0070.1
  • Murphy, A. M., C. R. Homeyer, and K. Q. Allen, (2023) Development and Investigation of GridRad-Severe, a Multi-Year Severe Event Radar Database, Monthly Weather Review, in press, https://doi.org/10.1175/MWR-D-23-0017.1
  • Rader, Jamin K., and Elizabeth A. Barnes (2023) Optimizing Seasonal-To-Decadal Analog Forecasts With a Learned Spatially-Weighted Mask. Geophysical Research Letters, 50 (23): e2023GL104983. https://doi.org/10.1029/2023GL104983
  • Shinoda, T., Tissot, P., & Reisinger, A. (2023). Influence of Loop Current and eddy shedding on subseasonal sea level variability along the western Gulf Coast. Frontiers in Marine Science, 9, 2726. https://doi.org/10.3389/fmars.2022.1049550
  • Sobash, R. A., D. J. Gagne, C. L. Becker, D. Ahijevych, G. Gantos, and C. S. Schwartz, (2023) Diagnosing storm mode with deep learning in convection-allowing models. Monthly Weather Review, In Press, https://doi.org/10.1175/MWR-D-22-0342.1.
  • Stock, J. and C. Anderson (2023) Memory-Based Sequential Attention. NeurIPS 2023 Workshop on Gaze Meets ML. December 2023. https://openreview.net/pdf?id=EykfhjYrM0
  • Ver Hoef, L., Adams, H., King, E.J. and Ebert-Uphoff, I., (2023) A Primer on Topological Data Analysis to Support Image Analysis Tasks in Environmental Science. Artificial Intelligence for the Earth Systems, pp.1-38, Jan 2023. ​​https://doi.org/10.1175/AIES-D-22-0039.1

2022

  • Anderson, C., Stock, J., Anderson, D. (2022) Interpretable Climate Change Modeling with Progressive Cascade Networks. AI for Earth and Space Science Workshop at the International Conference on Learning Representations. April 2022, https://doi.org/10.48550/arXiv.2205.06351
  • Anderson, C., Stock, J., Anderson, D. (2022) An Interpretable Model of Climate Change Using Correlative Learning.Tackling Climate Change with Machine Learning Workshop at the Conference on Neural Information Processing Systems. Dec 2022, https://arxiv.org/abs/2212.04478
  • Barnes, Elizabeth A., Randal Barnes, and Mark DeMaria. (2022) “Sinh-Arcsinh-Normal Distributions to Add Uncertainty to Neural Network Regression Tasks: Applications to Tropical Cyclone Intensity Forecasts.” EarthArXiv, July. link, in press in Environmental Data Science.
  • Barnes, Elizabeth A., Randal J. Barnes, Zane K. Martin, and Jamin K. Rader (2022) This Looks Like That There: Interpretable neural networks for image tasks when location matters, Artificial Intelligence for the Earth Systems, 01 Jul 2022, https://doi.org/10.1175/AIES-D-22-0001.1
  • Chase, R. J., D. R. Harrison, A. Burke, G. M. Lackmann, and A. McGovern, (2022) A Machine Learning Tutorial for Operational Meteorology. Part I: Traditional Machine Learning. Weather and Forecasting, 37, 1509–1529, https://doi.org/10.1175/WAF-D-22-0070.1.
  • Dueben, P., M. G. Schultz, M. Chantry, D. J. Gagne, D. M. Hall, and A. McGovern, (2022) Challenges and benchmark datasets for machine learning in the atmospheric sciences: Definition, status and outlook. Artificial Intelligence for the Earth Systems, 1, e210002, https://doi.org/10.1175/AIES-D-21-0002.1.
  • Flansburg, C., & Diochnos, D. I. (2022). Wind Prediction under Random Data Corruption (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12945-12946. https://doi.org/10.1609/aaai.v36i11.21609
  • Haynes, J.M., Y.J. Noh, S.D. Miller, Katherine D. Haynes, Imme Ebert-Uphoff and A. Heidinger (2022). Low Cloud Detection in Multilayer Scenes Using Satellite Imagery with Machine Learning Methods. Journal of Atmospheric and Oceanic Technology, 39(3), pp. 319-334, https://doi.org/10.1175/JTECH-D-21-0084.1
  • Kamangir, Hamid, Evan Krell, Waylon Collins, Scott A. King and Philippe Tissot (2022). Importance of 3D Convolution and Physics-based Feature Grouping in Atmospheric Predictions. Environmental Modeling & Software, 154, 105424, https://doi.org/10.1016/j.envsoft.2022.105424
  • Lagerquist, Ryan and Imme Ebert-Uphoff (2022) Can We Integrate Spatial Verification Methods into Neural Network Loss Functions for Atmospheric Science? Artificial Intelligence for the Earth Systems, 1(4), p.e220021. https://doi.org/10.1175/AIES-D-22-0021.1
  • Liu, N., Liu, C., & Tissot, P. E. (2022). Relative Importance of Large‐Scale Environmental Variables to the World‐Wide Variability of Thunderstorms. Journal of Geophysical Research: Atmospheres, 127(17), e2021JD036065. https://doi.org/10.1029/2021JD036065
  • Mamalakis, Antonios, E. A. Barnes and I. Ebert-Uphoff (2022). Investigating the fidelity of Explainable Artificial Intelligence methods for applications of Convolutional Neural Networks in Geoscience, Artificial Intelligence for the Earth Systems (AMS), 01 Oct 2022, https://doi.org/10.1175/AIES-D-22-0012.1
  • Mamalakis, Antonios, Imme Ebert-Uphoff and Elizabeth A. Barnes (2022). Neural Network attribution methods for problems in Geoscience: A novel synthetic benchmark dataset, Environmental Data Science, https://doi.org/10.1017/eds.2022.7
  • Mamalakis, Antonios, Imme Ebert-Uphoff and Elizabeth A. Barnes (2022) Explainable Artificial Intelligence in Meteorology and Climate Science: Model fine-tuning, calibrating trust and learning new science, in Beyond explainable Artificial Intelligence by Holzinger et al. (Editors), Springer Lecture Notes on Artificial Intelligence (LNAI), https://link.springer.com/chapter/10.1007/978-3-031-04083-2_16
  • McGovern, Amy, Imme Ebert-Uphoff, David John Gagne II and Ann Bostrom (2022) Why we need to focus on developing ethical, responsible, and trustworthy artificial intelligence approaches for environmental science, Environmental Data Science, 1, E6. doi:10.1017/eds.2022.5
  • McGovern, Amy, Ann Bostrom, Phil Davis, Julie L. Demuth, Imme Ebert-Uphoff, Ruoying He, Jason Hickey, David John Gagne II, Nathan Snook, Jebb Q. Stewart, Christopher Thorncroft, Philippe Tissot and John K. Williams (2022) NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES). Bulletin of the American Meteorological Society, https://doi.org/10.1175/BAMS-D-21-0020.1
  • Rader, J. Barnes, E., Ebert-Uphoff, I., Anderson, C. (2022) Detection of forced change within combined climate fields using explainable neural networks. Journal of Advances in Modeling Earth Systems, vol. 14, no. 7, 2022. https://doi.org/10.1029/2021MS002941
  • Stock, J., and Anderson, C. (2022) Trainable Wavelet Neural Network for Non-Stationary Signals. AI for Earth and Space Science Workshop at the International Conference on Learning Representations, December 2022. https://arxiv.org/abs/2210.12185
  • Stock, J., and Anderson, C. (2022) Attention-Based Scattering Network for Satellite Imagery. Tackling Climate Change with Machine Learning Workshop at the Conference on Neural Information Processing Systems, April 2022. https://doi.org/10.48550/arXiv.2205.03355
  • Vicens-Miquel, Marina, Antonio Medrano, Philippe Tissot, Hamid Kamangir, Michael Starek, Katie Colburn (2022) A Deep Learning Based Method to Delineate the Wet/Dry Shoreline and Compute Its Elevation Using High-Resolution UAS Imagery. Remote Sensing, 14(23), 5990. https://doi.org/10.3390/rs14235990 
  • Vicens-Miquel, Marina, Antonio Medrano, Philippe Tissot, Michael Starek and Katie Colburn (2022). Deep Learning Automatic Detection of the Wet/Dry Shoreline at Fish Pass, Texas. Paper 2446, Proceedings of the IGARSS 2022 conference. https://ieeexplore.ieee.org/document/9884633 

2021

  • Barnes, Elizabeth A. and Randal J. Barnes (2021) Controlled abstention neural networks for identifying skillful predictions for regression problems, Journal of Advances in Modeling Earth Systems  https://doi.org/10.1029/2021MS002575
  • Barnes, Elizabeth A. and Randal J. Barnes (2021) Controlled abstention neural networks for identifying skillful predictions for classification problems, Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2021MS002573
  • Beucler, Tom; Ebert-Uphoff, Imme; Rasp, Stephan; Pritchard, Michael; Gentine, Pierre (2021) Machine Learning for Clouds and Climate. Geophysical Monograph Series, book chapter, published by AGU
  • Diochnos, Dimitrios I. and Theodore B. Trafalis (2021) Learning Reliable Rules under Class Imbalance. SIAM International Conference on Data Mining, SDM 2021: 28-36. doi: 10.1137/1.9781611976700.4
  • Flora, Monte L., Corey K. Potvin, P. S. Skinner, S. Handler, and Amy McGovern (2021) Using machine learning to generate storm-scale probabilistic guidance of severe weather hazards in the Warn-on-Forecast system. Monthly Weather Review, 149, 1535–1557, https://doi.org/10.1175/MWR-D-20-0194.1
  • Kamangir, Hamid, Waylon Collins, Philippe Tissot, Scott A. King, Hue Thi Hong Dinh, Niall Durham and James Rizzo (2021) FogNet: A Multiscale 3D CNN with Double-Branch Dense Block and Attention Mechanism for Fog Prediction, Machine Learning with Applications, 5: 100038. doi: 10.1016/j.mlwa.2021.100038
  • Lagerquist, Ryan, D. Turner, Imme Ebert-Uphoff, Jebb Q. Stewart and V. Hagerty (2021) Using Deep Learning to Emulate and Accelerate a Radiative Transfer Model. Journal of Atmospheric and Oceanic Technology, 38(10), pp.1673-1696, Sept 2021, https://doi.org/10.1175/JTECH-D-21-0007.1
  • Lagerquist, Ryan, Jebb Q. Stewart, Imme Ebert-Uphoff and Christina Kumler (2021) Using deep learning to nowcast the spatial coverage of convection from Himawari-8 satellite data. Monthly Weather Review, 149(12), pp.3897-3921, Nov 2021, https://doi.org/10.1175/MWR-D-21-0096.1
  • Lee, Yoonjin, Christian D. Kummerow, and Imme Ebert-Uphoff  (2021)  Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data, Atmospheric Measurement Techniques, Volume 14, issue 4, 2699–2716. doi: 10.5194/amt-14-2699-2021

2020

  • McGovern, Amy, Ann Bostrom, Imme Ebert-Uphoff, Ruoying He, Chris Thorncroft, Philippe Tissot, Sid Boukabara, Julie Demuth, David John Gagne II, Jason Hickey, and John K. Williams (2020) Weathering environmental change through advances in AI, Eos, 101, doi: 10.1029/2020EO147065