Al in Weather, Climate, and Coastal
Oceanography (AI2ES)

Amy McGovern, University of Oklahoma
Director, AI2ES

Representing all of the members of AI2ES (see next
slides!)

Slides, talks, and publication links




Senior Leadership_Team

L - 4 A

Amy McGovern, Ann Bostrom, Phillip Davis, Del Imme Ebert-Uphoff, Julie Demuth, NSF David John Gagne, Ruoying He,
University of University of Mar College Colorado State National Center for NSF National Center for North Carolina
Oklahoma - Washington University Atmospheric Research Atmospheric Research  State University
Director

John Allen, Central Nathan Snook, Monica Youngman, Rob Redmon, Philippe Tissot, Texas  Christopher John Williams,
Michigan University University of NOAA NOAA A&M University, Thorncroft, University The Weather
Associate director Oklahoma Corpus Christi of Albany, SUNY Company

ai2es.org




AI2ES Current Members and Collaborators

' B m

Marina Charlie Dara Betz Susan Korinne Jorge Celis Gao Dalie ChenRui Dimitrios Jacob
Alchirch Becker Campbell Caruso Diao Diochnos Radford

e,

Gabrielle Kyle Hilburn Matthew Aaron Hill Cameron Arnoldas Hector Bowen Chen Monte Flora

Gantos Kastl Homeyer Kurbanovas Marrero

Don
Berchoff

4N

Christian Stuart Edris Aaron Evans

Andrea

Christian
McClung Medrano Erickson Moen Musgrave Neeman Nelson Quintero Schumacher Sewell

Brandon ntonio Nathan Kristina Son Nguyen

< 4
; .l 2 \ 7 v : E £
Erin Smith Michael Savannah Evan Sudler Kara Sulia Carly Sutter Lander Ver Marina Vicens ~ Miranda Mel Reyes Yan Xie Ignacio Matthew
Starek Stephenson Hoef Miquel White Wilson Yockers Cappucci

ai2es.org




AI2ES Alumni and
past Collaborators

Mariana v Akansha ' Maria Jason Monique Laura Amanda
Cains Singh Bansal Gaudet Madsen Stock Shotande Mamalakis McGee Murphy Chase

RN [
E A6 \ i :
Vanessa Tobias Deianna Chad Charlotte Haley Vincent Conner Josh Noah Lang Kaelia Raven Jordan
Przybylo Schmidt Madlambayan Wiley Cabrera Perez Ferrera Flansburg Friesen Okamura Reese Robinson

o | 1|
Colin Joshua Michael
Willingham Pan Yu

A

Christopher Trevor Michael Evan Krell Anna Tiffany Le Alberto Liu Max Luke Terry
Germano Harms Gray Lowe Sasser

E}
| ."
iy ‘JA 4
: : e “ Charles - ] B
Jay William Ashley Marines Sid Jerald “Jerry”  Waylon Collins  Christopher D. Marie Ryan Lagerquist Chuck — Yoonjin Lee  Hunter Smith  Elizabeth Barnes
Rothenberger McGovern-Fagg Boukabara Brotzge Wirz McGraw Anderson W:i:e

ai2es.org




NSF Al Institute for Research on
Trustworthy Al in Weather, Climate,
and Coastal Oceanography (AI2ES)

AI2ES is developing novel, physically based Al techniques that are demonstrated to be
trustworthy, and will directly improve prediction, understanding, and communication of
high-impact weather and climate hazards, improving climate resiliency.
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Al2ES’s Foundation is AMS

e Much of our original planning
happened at AMS 2020

e The leadership team knew each
other well from years of interacting
through the AMS Al committee

ai2es.org



Year 1: Boulder
hikes and Aircraft
Carrier in Corpus
Christi (2021)
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How do you define Artificia

+ Click to add text
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Year 3: Denver -
NCAR (AMS Denver

209 33sidential panel,
planning & team bus ride
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Year 4: Baltimore Convention Center (AMS 2024)
with two new Expand Al teams, FIU, SDSU
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Year 5: New
Orleans ‘ N ta sl
WWiII | S SR
Museum

(AMS 2025)

Summarizing
Research,
scavenger hunt
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AI2ES Key Contributions By Area

Trustworthy Al Broadening

Participation

Risk Environmental
Communication Science
Workforce

Development

Et¥ .cal, Responsible, and Use-Inspired Al
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AI2ES Research Impact
Summary

e Publications and presentations

o 120+ peer-reviewed publications plus many more
in review, in-prep and on arXiv

o  Over 423 presentations with 20+ student awards
e Lives touched:

o 24 faculty partially supported, 12 research
scientists, 23 postdoctoral research associates, 46

graduate students, 83 undergraduate researchers
and REU students

e R20: Transitioned and running multiple
operational products

o Helped lead to one new startup company: Fathom
Science

e Ledto 7 additional funded projects (so far!): 2
ExpandAl projects, and 5 other related grants
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Frequency
1-Less than once a month
2-About once a month
—— 3-A few times per month
— 4-Afew times per week

= 5-Daily or almost daily

Organization
csu
DMC / TAMU-CC
® NCAR
* NCSU
* NOAA

® Other academic partners
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McGovern, Amy, Julie Demuth, Ann Bostrom, Christopher D.
Wirz, Philippe E. Tissot, Mariana G. Cains, and Kate D. Musgrave.
2024. “The Value of Convergence Research for Developing
c R h Trustworthy Al for Weather, Climate, and Ocean Hazards.” Npj
0 nve rge n Ce e Se a rC Natural Hazards 1 (1): 1-6. https://doi.org/10.1038/s44304-024-

00014-x.

Requirements for convergence research:
« Specific, compelling problem
« Diverse expertise — different disciplines,
sectors, roles, etc.
o Deepintegration among team

What helps makes convergence successful
e Sustained, large funding
« Experience of some team members with
convergence, who can guide others
o Readiness of team to work together
o Leadership that values convergence

« Involvement of next generation AME PEITEL DIEEUSSIRN & ~UHTENES ANSEgEmar —

i ) o ) Beyond Boundaries: Mobilizing Convergence and

« Regular, ongoing, iterative interactions Translational Science for Earth System Resilience
Wednesday, Jan 28, from 1:45-3:00, 342F

ai2es.org
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Sampling of Science Success
Stories

Ty
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Julie Demuth Ann Bostrom Chris Wirz Mariana Cains  Andrea Schumacher Deianna Madlambayan Jacob Radford Susan Campbell Erin Smith

Risk Communication team goals:

« Improve understanding of how key aspects of Al/ML models — transparency,
explanation, reproducibility, representation of uncertainty — influence trust in Al

« Develop models of how attitudes and perceptions of Al trustworthiness influence
risk perception and use of Al

« Develop principled methods of using this knowledge to inform
- development of trustworthy Al approaches and
- provision of Al-based information for improved decision making

ai2es.org



Empirical research with users

National Weather Service (NWS) Forecasters’ Perceptions of An Assessment of How Domain Experts Evaluate Machine Learning

NWS forecasters’ perce ptions Al/ML and Its Use in Operational Forecasting. Christopher in Operational Meteorology
D. Wirz, Julie L. Demuth, Mariana G. Cains, Miranda White, David R. Harrison, Amy McGovern, Christopher D. Karstens, Ann

Of AIML for operations Jacob Radford, and Ann Bostrom (2024) Bostrom, Julie L. Demuth, Israel L. Jirak, and Patrick T. Marsh
Bulletin of the American Meteorological Society. (2025) Weather and Forecasting. https://doi.org/10.1175/WAF-D-
https://doi.org/10.1175/BAMS-D-24-0044.1 24-0144.1

Key result: “No matter if forecasters were hesitant or excited about Al/ML, they agreed they were open to
using whatever tools available to assist them in fulfilling the mission that motivates them.” (Wirz et al.)

Prediction of AI/ML Guidance: 30-day Lead Time

Prediction of Eddy Sverdrup Initialized: May 16, 2019
« Initialized: 5/16/2019 - 6/7/2019
. v lid: 6/15/2019 71712019 }‘5‘
. initialized daily from
5/16/2019 6/7/2019 producing a
daily forecast for 6/15/2019 -
19

NG Idj e 15, 2019

Exploring NWS Forecasters’ Assessment of Al Guidance
Trustworthiness. Mariana G. Cains, Christopher D. Wirz, Julie L.
Demuth, Ann Bostrom, David John Gagne I, Amy McGovern, Ryan
A. Sobash, and Deianna Madlambayan (2024)

Expert decision-makers’

perceived trustworthiness of
AIML pred iCtionS Weather and Forecasting. https://doi.org/10.1175/WAF-D-23-

n the e
of the SSH fields.

h d line: LC/LCE boundal oy F
eed onthe observed eddy fro i
N r\hwetAtl ntic Oce (NWA)

W:“"UB‘TWE
@ g 3

0180.1

Info Board Playback speed can be adjusted from the cog icon in the lower right of the video.

Key result: “forecasters’ assessment of Al guidance trustworthiness is a process that occurs over time rather
than automatically and suggest that developers must center the end user when creating new Al guidance tools
to ensure that the developed tools are useful and used.” (Cains et al.)
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Methods transfer from social Developing new AIML models based

sciences to AIML on users’ needs

Wirz et al (2024) Increasing the Reproducibility and Evidential dense
Replicability of Supervised Al/ML in the Earth Systems neural network
Science by Leveraging Social Science Methods, Earth and model that
Space Science https://doi.org/10.1029/2023EA003364 predicts
probabilities of
winter

Key result: “The [quantitative content analysis]-
based approach we have outlined reduces the
subjectivity of hand labeling by creating a
codebook that outlines the exact decision-making
rules for assigning labels and then empirically

precipitation-type

Stakeholder
interviews are

evaluates the reliability of labelers in adhering to guiding design and
those rules. This process and the information it deployment of
. . el epe operational ML
provides also increase the reproducibility and with UQ: need to
replicability of the ML model.” be progressive with
complexity

1200 AM 1200 AM 1200aM 00AM 00AM
ne
Med ter Tempe Ribbon Water fater Ter
Air Temperature Measurements. Interpolated Predicted Air Temperature + Air Temperature Predictions.
+ Water Temperature Predictions
i 2 .



https://doi.org/10.1029/2023EA003364

Research

to advance theory

AI2ES risk communication research aims
to advance theory as well as practice

Risk
e.g., Earle & Cvetkovich (1995);
Earle & Siegrist (2008); Siegrist
(2021); Poortinga & Pidgeon (2006)

Interpersonal and
Organizational

e.g., Mayer et al. (1995); Rousseau et Dzindolet et al
al., (1998); Lewicki et al. (1998) ; Kee

& Knox (1970); Rotter & Stein (1971) (2004)

Trustworthy Al
e.g., Glikson & Woolley (2020); Hoffman et al. (2020);
Jacovi et al. (2021)

Automation
e.g., Muir (1987);

Hoff & Bashir (2015); Lee & See

Christopher D. Wirz, Julie L. Demuth, Ann
Bostrom, Mariana G. Cains, Imme Ebert-Uphoff,
David John Gagne Il, Andrea Schumacher, Amy
McGovern, Deianna Madlambayan (2025)
(Re)Conceptualizing trustworthy Al: A
foundation for change, Artificial Intelligence.
https://doi.org/10.1016/j.artint.2025.104309

(2003);

Developer factors

Note: Perceived trustworthiness

and key factors for the context
may not be the same across
groups or individuals

User factors

Key factors for the

context of the Al
model development

Al trustworthiness

Subjective evaluation

O

Key factors for the

context of the Al
model development

Al trustworthiness

Subjective evaluation

Development context

Developer factors
Key factors for the
context of how the Al
model is intended or
will be used

Developer

User factors
Key factors for the
context of how the Al
model is intended
or will be used

O
-
——

Use context

ai2es.org

Al Trustee

Performance

‘Transparency

Background and
supporting information _ impact

Shared context and risk
Risk and

Sensitivity relative Role of human judgment Risk and
1o participant and emotional intelligence |~ consequences
Reliability, accuracy
ion of ion of outputs,
disclalr of process
Accept- |Affect level
Run time, Who is impacted |abilty of Al | of inputs &
immediacy result | content
o fect of Urgency of person's
Ability to learn, admission of mistakes. implementation decision vs Al
& Bias Degree of automation E
Ease of
interactions
Person trustor
Perceptions Personal characteristics. Attitudes, values ; Task demand and
Experience with Al and, St
Cultural background
Perceived erson-|
Perceived Perceived faimess| ease of i E |
Use) caton| ezt pesy Miscellaneous
Gender
Provision of feedback
Trust violation
Perceived
Perceived accountabilty P‘“,‘,"y"’ truste | CXPertise and selfefficacy Beliefs about
eoct worthiness control and Type of use and
agency
Technology seft- SN ser. foston
nology self- g faction
Perceived | Perceived Expertise, competence in own
Perceived explainability | technical | understand- re efficacy 4o igion efficacy [EEVIPOR] Agency and roles of | Agreement between
competence | ability ethical values trustor and trustee person and Al

Systematic review of empirical research on
trust in embedded Al, under review



https://doi.org/10.1016/j.artint.2025.104309

Setting research agendas & sparking new collaborations

Organized and convened two workshops with varied expertise,
across disciplines, sectors, organizations, etc.

Al for Medicine and Meteorology (AIM?2) workshop
Bostrom and Demuth et al 2023. Trust and trustworthy

artificial intelligence: A research agenda for Al in the — To explore risk assessment, characterization,

environmental sciences. Risk Analysis, 2024 44(6),1498-1513. commun-lcatlon, trus-t, trustwc?rthlness, and us.e _Of Al
https://doi.org/10.1111/risa.14245 uncertainty predictions for high-pressure decision-

making in meteorology and medicine

Research needs in four broad areas:

e User-oriented development and co-development

e Understanding and measuring trust and
trustworthiness

® Goal alignment, calibration, and standard setting

® Integrating risk and uncertainty communication

research with research on trust in Al

ai2es.org
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Foundational Al: Key Research Areas

o Earth science has different Al needs than the other fields where Al is
commonly used.

o Need to develop/adjust foundations of many Al concepts for use in earth
science.

ai2es.org



McGovern, A., Ebert-Uphoff, |., Gagne Il, D.J. and Bostrom, A., 2022. Why

[J
Et h Ica I a n d we need to focus on developing ethical, responsible, and trustworthy

artificial intelligence approaches for environmental science. Environmental

Re S p O n Si b I e AI Data Science, 1, p.e6. https://doi.org/10.1017/eds.2022.5

Ways in which AI can go wrong for environmental sciences

o Helped to pioneer the focus on | Issuesreated o training data:

f or et h | ca | an d res p ons | b I e A I ; ?or'l-r'epresentative trgining data, including lack of geo-diversity
) - Training labels are biased or faulty
fo r Weath er an d Cl im ate 3. Data is affected by adversaries

o Demonstrated multiple ways in ez bt (o AL L
which Al can go wrong for ES
o Bad forecasts can lead to lives
or property lost

o Awareness is the first step to
preventing issues

Model training choices

Algorithm learns faulty strategies

Al learns to fake something plausible

Al model used in inappropriate situations
Non-trustworthy AI model deployed
Lack of robustness in the AI model

N T g B9 [ =

Other issues related to workforce and society:

1. Globally applicable AI approaches may stymie burgeoning efforts in developing
countries.

Lack of input or consent on data collection and model training

Scientists might feel disenfranchised.

4. Increase of CO, emissions due to computing

RIS

ai2es.org
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McGovern, A., A. Bostrom, M. McGraw, R. J. Chase, D. J. Gagne, |. Ebert-

[ ]
Et h lca I a n d Uphoff, K. D. Musgrave, and A. Schumacher, 2024: Identifying and

Categorizing Bias in Al/ML for Earth Sciences. Bulletin of the American

H Meteorological Society,105, E567—E583, https://doi.org/10.1175/BAMS-
Responsible Al e

o Developed a categorization of
biases for Al for ES

overload, stress

e Now developing bias e
measurement and mitigation ————
a p p r.o a C h e S Validation Comp;i;astlonal Human Bias

Use and
Interpretation

Working

\ memory
- e making
12A.3 - Bias Correction in Data Preparation and Its “ h

Implications for Al Model Performance. Yan Xie.

‘g%‘i”es"'ay' IV 242, 210248, SOOI @ SR Categorization of bias for Al/ML for ES
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Explainable Al

e Deep dive into XAl methods and
their limitations for geosciences

Mamalakis A, Ebert-Uphoff |, Barnes EA. Neural network attribution methods for
problems in geoscience: A novel synthetic benchmark dataset. Environmental Data
Science. 2022;1:e8. https://doi.org/10.1017/eds.2022.7

Mamalakis, A., E. A. Barnes, and |. Ebert-Uphoff, 2022: Investigating the Fidelity of
Explainable Artificial Intelligence Methods for Applications of Convolutional Neural
Networks in Geoscience. Artif. Intell. Earth Syst., 1, €220012,
https://doi.org/10.1175/AIES-D-22-0012.1.

Krell E, Kamangir H, Collins W, King SA, Tissot P. Aggregation strategies to improve
XAl for geoscience models that use correlated, high-dimensional rasters.
Environmental Data Science. 2023;2:e45. hitps://doi.org/10.1017/eds.2023.39

o Developed benchmarks to test XAl

methods
o Developed novel XAl methods

Step 1: Generate N samples of X € R from a MVN Step 3: Pretend function F is not known and
train a NN using inputs X,, and outputs y,

Step 4: Use XAl methods to explain the NN
and compare with the ground truth from F

Lt : 4),,¢ F: ground truth
Known F: R? - R = Y. A

Step 2: Use a known function F that maps .
each vector x,, into a scalar y, . AN

ulr ' & o % F: from XAl method
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Explainable Al

e Published a tutorial on XAl methods
o Developed novel interpretable models
for S2S applications

A
High
Post-hoc explainability methods
[Low-Dimensional
> 3 ional \\
o= [Lincar Regression \ \
i
3 Shallow
g Decision Trees =
~
<] High-Dimensional e,
-g Linear Regression T T ——
= F B
uture Explanation
2 Logistic Regression Methzds
g Deep e
g Decision Trees | |—ns L
T R
Bayesian Models
Random Forests/ =
GBTs Deel&L;al;nng High-dimensional,
Low cHiods Highly Non-Linear Methods
Low Model complexity High
Fully Partially

Uninterpretable

Interpretable Interpretable

Flora, M. L., C. K. Potvin, A. McGovern, and S. Handler, 2024: A
Machine Learning Explainability Tutorial for Atmospheric
Sciences. Artif. Intell. Earth Syst., 3, €230018,
https://doi.org/10.1175/AIES-D-23-0018.1.

Barnes, E. A., R. J. Barnes, Z. K. Martin, and J. K. Rader, 2022:
This Looks Like That There: Interpretable Neural Networks for
Image Tasks When Location Matters. Artif. Intell. Earth Syst., 1,
€220001, https://doi.org/10.1175/AIES-D-22-0001.1.
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[y 1) ] 0 ',"(,’/,// . T T _.,_A-Skm.
Qulaﬁltiﬁmwﬂ estimated epistemic S N LI S
uncertainty for weather

o Developed an open-source library
https://github.com/ai2es/miles-guess

o Published tutorial paper on UQ for ES
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o Development of novel UQ approaches for e
turtle cold stunnings, in-depth interviews L rmemese
With end_users' and Operationalized neW (d)OZO Ojl 012 0j3 014 0j5 016 rizﬁ‘ng Unn 1.0
m et h o d Precipitation Type Belief Mass

20

Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for
Earth System Science Applications, Schreck et al. (2024). Artificial Intelligence
for the Earth Systems. https://doi.org/10.1175/AIES-D-23-0093.1

Creating and Evaluating Uncertainty Estimates with Neural Networks for
Environmental-Science Applications. Haynes et al. (2023).

Artificial Intelligence for the Earth Systems. https://doi.org/10.1175/AIES-D-
22-0061.1

(6]

—— Measurements
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Machine Learning Uncertainty Quantification for
Cold-Stunning Events

Leveraged Multi-Model Ensemble (MME)

approaches to compare three ensemble

models with differing loss functions:
Mean Squared Error (MSE)
Negative Log-Likelihood (NLL)
Continuous Ranked Probability
Score (CRPS)

Found that CRPS-MME produced most
calibrated uncertainty estimates for
extreme, high-impact water temperature
predictions using nonparametric
statistical analysis

12-HR
Predictions

Temperature (°C)

Feb 10 Feb 12 Feb 14 Feb 16 K Feb 18 Feb 20 Feb 22 Feb 24
2021

25

20 -ESRSS

15

101urtle Threshold R

96-HR
Predictions

Temperature (°C)

Feb 10 Feb 12 Feb 14 Feb 16 Feb 18 Feb 20 Feb 22 Feb 24
2021

DateTime

.- NLL_MME Mean Prediction -+ CRPS-MME Mean Prediction -~ MSE-MME Mean Prediction
— NLL.MME +2SD =~ CRPS-MME +2SD MSE-MME +2SD

— Observed Water Temperature

White, M. C., et. al. (Accepted). Machine Learning Uncertainty
Quantification for Extreme Cold Water Events. Artificial
Intelligence for the Earth Systems.

AMS talk: Wednesday 11:30 322A




Physics-inspired Al: Measuring Sharpness

e Problem:
Generative Al models can produce “sharper” forecasts than traditional DL

Is sharpness correlated with trust?
How do we meaningfully measures for “sharpness” for weather?

O
O

O

Solution: Identify and evaluate sharpness metrics from other fields.

[
Development of novel Gaussian blur equivalence tool for uniform
Interpretation of metrics. Gaussian blur increasing ‘
Reference image i
7
Y.,
Ebert-Uphoff, I., Ver Hoef, L., Schreck, J.S., Stock, J., Molina, M.J.,
McGovern, A., Yu, M., Petzke, B., Hilburn, K., Hall, D.M. and Gagne, D.J., : : p ]
2025. Measuring Sharpness of Al-Generated Meteorological Imagery. 4 - Gaussian Blur Equivalent (GBE):
A 100 Where does the evaluation image
fit in the above sequence?

Artificial Intelligence for the Earth Systems. https://doi.org/10.1175/AIES-
D-24-0083.1
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CREDIT: Combining Al and Physics for More Accurate

Example case of Storm Alex on 2 October 2020, 00Z day-7 forecast
(b) 500 hPa GPH and Temp | IFS

and Realistic Forecasts e
i . 3 ,,__’< 268
CREDIT: Open foundational research platform
for Al Earth System Prediction developed at
NSF NCAR. A
Problem: Al NWP models don’t follow physical A
laws, resulting in artifacts and instabilities.
Solution: Add global physics constraints during =
training and inference. Improves precip and ¢ e WA 7 el TS
cyclone structure, especially after day 4. i " ok
Sha’s talk on Wed. 2:45 in 330A: Sha, Y., Schreck, J. S., Chapman, W., & Gagne, D. g 65'N 75N 35°N 45°N  55°N 65N 75°N )
”Improving Al Weather Prediction MOdels J. (2025)_ Investigating the use of terrain- [*] APE — EKE conversion is computed as meridional eddy heat flux multiplies temperature gradient -(vT')(3T/ay).
. following coordinates in Al-driven precipitation . .
Using Global Mass and Energy forecasts. Geophysical Research Case study showing stronger horizontal and vertical
Conservation Schemes” Letters.https://doi.org/10.1029/20256L118478 gradients in physics-constrained AIWP model.



https://doi.org/10.1029/2025GL118478

Physics-based Al

e Goal: Develop Al models that emulate strategies a human would use
o Methods: use feature engineering + ML models for which we can
visualize and tune strategies

. Extract
Strategies
Evaluate
Training Train Editable, Performance Final
Data e Glass-Box ML and Model
Model Model

Strategies

Mitchell, N., Ver Hoef, L., Ebert-Uphoff, I., Moen, K., Hilburn, K., Lee, Y, and Kind, E.J.. (2025), Knowledge-Guided Machine Learning: lllustrating the use of
Explainable Boosting Machines to Identify Overshooting Tops in Satellite Imagery (in review at AIES).
Pre-print: https://arxiv.org/abs/2507.03183

ai2es.org
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Robust Al w |

- v i
011 01, j—i’ O 01 | - | BT
Semi-Supervised Learning Contributions
e Meta Co-Training (European Conference on Al
2025; Rothenberger & Diochnos) or || o [ Gmer | - | 8
o Novel method for multi-view learning that advances —
how models learn from limited labeled data. — | taeled performance
o Establishes new State-of-the-Art accuracy LT e feedback
classification in several image datasets used for few- ] pseudo-labelson
shot classification tasks. unlabeled data
o Two follow-up papers on this work currently under curacy v Sep. ImageNet 10%

submission.

e Review on Pseudo-Labeling (accepted in
Journal of Al Research, 2025; Rothenberger et
al.

o Taxonomy of semi-supervised and unsupervised
learning techniques used for pseudo-labeling.

Accuracy (%)

0 200 400 600
Step
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Use-Inspired Operational ML Cold-Stunning
Predictions with UQ N oming |

morning
) . ) Ensemble Water Temperature Forecasts for the Upper Laguna Madre
Conducted interviews with coastal 90 o
users to assess (1) how they make 80 g
decisions using ML predictions and 70 i | el
(2) how they interpret different o TN

pus ™.
. = / f\\/ ff
representations of water temperature % D
informatiOn (deterministic VerSUS § 40 Fisheries Water Temperature Thresholc

orobabilistic) .

30
. . . . alp - 20 : : ; ! : : | ; i ’
Qualitative findings will inform = - e s - =
a dva nceme nts to new p red | Ctive 1?;91:-/4 1?;91/3,4 1?;9:3',4 1?(;197\3» 1?;5:»6 ag:a;ozzw E o '“'E
. . . Time ) 0 2
Wate r te m pe ratu re visua l |Zat|0n5 d nd - -Interpolated Median Water Temperature Predictions - Ribbon Water Temperature Predictions § ﬁf - <
H H H — Water Temperature Measurements Air Temperature Measurements o ¥
communi Catlon Of new unce rta I nty Interpolated Predicted Air Temperature « Air Temperature Predictions E 'J'Jl o -
info rm ation for users « Water Temperature Predictions .g $ :

Developed full UQ method for ML cold stunning predictions, attend Miranda White’s Wednesday 11:30 AM, J10B.4
Talk, room 322A “Al machine learning uncertainty quantification for cold-stunning events” and other talks from team

ai2es.org



Use-Inspired Physics Based ML Models For Fog
Predictions E—

Temptl)ral Transformer Encloder | < H igh pe rfo rmance

Variable Transformer Encoder

: , ; Research Models

Created deep learning models to predict ’ | ’ |
fog/visibility based on sea surface | B “ (=) B8 elated single model
temperatures and HRRR predictions TRE | | for the full northwest —»

—————— Gulf for operational
3D-CNN (FogNet), Transformer (FogNet GGG G ﬁi prototype
V2) & VAE Fog Predictions for prototype == '

Positional Encoding

College Station LOUISIANA

Round Rock Opelousasy— Baton Rouge

operational model Q S e S
- . . SanAb::;:%:m’E‘s ﬁ ;j;ueouun i
Physics guided architecture (3D CNN) = :%W
. () [+ B
and/or features selection (VAE) £ o LR o
) Yak
Lesson: models with the most embedded = OO
Physics outperformed all other models v

Kamangir, H., Collins, W., Tissot, P., King, S. A., Dinh, H., Durham, N., & Rizzo, J. (2021). FogNet: A Multiscale 3D CNN with Double-Branch Dense Block and Attention Mechanism for Fog
Prediction. Machine Learning with Applications, 5, 100038. https://doi.org/10.1016/j.mlwa.2021.100038.

Kamangir, H., Krell, E., Collins, W., King, S. A., & Tissot, P.E. (2022). Importance of 3D Convolution and Physics-based Feature Grouping in Atmospheric Predictions. Environmental
Modelling & Software, 154, 105424, https://doi.org/10.1016/j.envsoft.2022.105424.

ai2es.org
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Use-Inspired ML Coastal Flooding

Developed and implemented deep
learning methods to predict water
levels at tide gauges along the Texas
coast

Worked with stakeholders to deploy
low-cost water level sensors at coastal
inundation hot spots

Developed and implemented a ML
method to predict water levels at
location with short time series while
taking advantage of the state and
federal backbone of tide gauges

Predictions

EXPAND > CONRAD BLUCHER
]!l'\ INSTITUTE

N
ARISTT | FOR SURVEYING AND SCIENCE

CLOSE Hohonu

Magnolia Beach, TX
Now: 6.45 feet
Last Updated: 8 minutes ago

and Predictions for
Magnolia Beach,
Texas

Water level

Water Level Measurements and =
Predictions for the Past Week

vvvvvvvvvv

Height in feet (D2W)
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T
SatSep 14 Mon Sep 16 Wed Sep 18
Time (CDT)
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https://doi.org/10.3390/w16202886

Camera Based Measurements of Total Water Level

S

]

Developed a camera and ground survey
based method to track the height of the
maximum coastal inundation on a beach or
total water levels

Demonstrated that tidal datums are not a . iy ‘m (

good indicator of coastal flooding for the \W‘wﬂ M(Ww) A \(\, M W”J[Kjb ’ K

microtidal Texas coast o M h J | \h W‘ T[ MJ Ww%“ﬂﬂ \W”M
E, 050 | Moo 1 i\ juﬂvj “““““““““““““““““““““

Identified the relative drivers of coastal £8 | o M_“_m_]Lm ) ||‘i il . wall

inundation, in particular wave period, for §* i, Ll - " ': UM MMSM””‘

the Texas coast R T I b | | I ;

A ! 1 U
Developed and implemented a total water O |
level predictive ML model

Vicens-Miquel, M., et al. "Machine-Learning Predictions for Total Water Levels on a Sandy
Beach." Journal of Coastal Research 41.1 (2025): 57-72. DOI: 10.2112/JCOASTRES-D-24-
00016.1

Vicens-Miquel, M.; Williams, D.; Tissot, P.E. (2024). Analysis of Sandy Beach Morphology Changes from a High Spatial
Temporal Resolution Dataset. Journal of Coastal Research. https://doi.org/10.2112/JCOASTRES-D-24-00007.1

ai2es.org
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Coastal Oceanography - Offshore

SSH SST Salinity

e Developed OceanNet for mesoscale ocean circulation predictions of
the Loop Current and the Gulf Stream systems

e Developed OceanWaveNet based on ensemble learning approach
for ocean surface wave forecasting

e Developed Simultaneous emulation and downscaling with
physically consistent deep learning-based regional ocean emulators

e Developed Generative Lagrangian data assimilation for ocean

dynamics under extreme sparsity

Chattopadhyay, A., M. Gray, T. Wu, A. B. Lowe, R. He (2024), OceanNet: A principled neural operator-based digital twin for regional oceans, Scientific Reports, 14, 21181 (2024) doi:
10.1038/s41598-024-72145-0

Chaichitehrani*, N., R. He, and M. N. Allahdadi (2024) Forecasting ocean waves off the U.S. East Coast using an ensemble learning approach. Artificial Intelligence for the Earth Systems. doi:
10.1175/AIES-D-23-0061.1

Gray, M*. A., A. Chattopadhyay, T. Wu, A. Lowe, and R. He (2025), Long-term Prediction of the Gulf Stream Meander Using OceanNet: a Principled Neural Operator-based Digital Twin, Ocean
Sciences, doi: 10.5194/0s-21-1065-2025

Lowe, A. B*., M, Gray, A. Chattopadhyay, T. Wu, R. He (2025), Long-term predictions of Loop Current Eddy evolutions using OceanNet: a Fourier neural operator-based data driven ocean
emulator, Artificial Intelligence for the Earth System, doi: 10.1175/AIES-D-24-0039.1.

Lupin-Jimenez, L., Darman, M., Hazarika, S., Wu, T., Gray, M., He, R., Wong, A., & Chattopadhyay, A. (2025). Simultaneous emulation and downscaling with physically consistent deep learning-
based regional ocean emulators. Journal of Geophysical Research: Machine Learning and Computation, 2(3), doi.org/10.1029/2025JH000851
Asefi, N., Lupin-limenez, L., Wu, T., He, R., & Chattopadhyay, A. (2025). Generative Lagrangian data assimilation for ocean dynamics under extreme sparsity. Machine Learning: Earth. DOl
10.1088/3049-4753/ae0b70 .
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F.,_ Use Inspired: Winter
: eather



Winter weather road surface detection with
NYSDOT

mproved ML model employing CNN, RF, and [DOT Official #8]: “In general using [Al] ...
that is just where the future is going, to help

ensembling methods o £ these thi st ok
with some of these things, so it just makes
o Paper accj,epted (1/17/26) sense. Use the tools. If you can use cameras
e Convergent science to help in real time or help predict, that is
o UA-NCAR visiting week (June 2025) where we need to be going.”

o Conducted 10 hours of interviews individually
across 15 different NYSDOT end-users
e Public datasets on Zenodo
o Updated labeling guidelines and trials with RC
o Datasheet prepared and available

AMS presentation Thursday, Jan 29 10:45am - A User-Centered Approach to
Developing a Trustworthy Al Tool for Weather-Related Road Surface Prediction
with the New York State Department of Transportation




Forecast Error Prediction for the HRRR

e Enhanced baseline LSTM skill by integrating a Vision

Transformer (ViT) encoder with microwave radiometer vertical-
profile inputs.

e Improved end-user decision support by quantifying predictive
uncertainty with a Bayesian Neural Network (BNN) and
delivering calibrated uncertainty metrics.

e Papersin Production:
O Predicting Forecast Errors for the HRRR using LSTM Neural
Networks: A Comparative Study Using New York and Oklahoma
State Mesonets
O A Hybrid LSTM-VIT Architecture for Prediction HRRR forecast errors

o Evaluating Deep Learning Forecast Error Modeling for High Impact
Weather

AMS presentation Monday, Jan 26 9:45am - A Hybrid LSTM-Vision
Transformer Architecture for Predicting Short Term NWP Forecast Errors

ai2es.org

Baseline Forecast Skill
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Current Weather Conditions from Mesonet Images

Radar and ML Predictions, 01/28/2024 15:50 UTC

Goal:

o Identify and delineate rain, snow,
and clear air from the mesonet
cameras in real time for situational
awareness

Achievements:
e Public Dataset on Zenodo
e Trustworthy Data Preparation
e ML Modeling for detection using a
CNN architecture
e RF architecture for determining
camera obstructions

AMS presentation Monday, Jan 26 11:00am - Applications for a Machine
Learning Camera Image Classifier Trained on the New York State Mesonet

ai2es.org




Atmospheric Visibility

Estimation from Mesonet 2023-06-06 09Z Visibility (mi)

—
Images
Goals
e Estimate atmospheric visibility
distance from camera images
e Develop techniques for training
models using noisy labels
e Apply nEtWOFk over entire state Wlth June 6-7, 2023 Canadian Wildfires, bringing
novel sites to provide critical visibility ~ smekeandlow\visibility conditions
information to emergency managers e ——

and state agencies




Use Inspired: Convective
Weather




H Storm Tracks for 14 April 2011 GridRad-Severe Event
Convective Weather o
40.0°F = N
{ j /)/%
V]
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5 ?/ /4 .
e
37.5° /ﬁ/ 3
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o Developed open dataset of severe

storms across CONUS (GridRad- Za
SEVERE) .

o Deep dive into nowcasting of , e
tornadoes in mesoscale
convective systems (MCSs) o s epors s st

37.5°

35.0°

Latitude

Murphy, A. M., C. R. Homeyer, and K. Q. Allen, 2023: Development and Investigation
of GridRad-Severe, a Multiyear Severe Event Radar Dataset. Mon. Wea. Rev., 151, 32.5°
22572277, https://doi.org/10.1175/MWR-D-23-0017.1.

30.0° & ]
259.0° 262.0° 265.0° 268.0° 271.0°

Murphy, A. M., and C. R. Homeyer, 2023: Comparison of Radar-Observed Tornadic Longitude

and Nontornadic MCS Cells Using Probability-Matched Means. J. Appl. Meteor.
Climatol., 62, 13711388, https://doi.org/10.1175/JAMC-D-23-0070.1.
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Composite Z CEDRIC Updrafts SAMURAI Updrafts
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Convective Weather

« Developed real-time approach to wfol e SR
estimating updraft distribution 5= ) 3 i -z
from radar O zj:g -

e Demonstrated improved hail ey 1605 -i6e0 T35 10
nowcasting combining NWP and ot sec s s s s o s : :3
observations s vl ~ TER:

°

il
I

Chase, R. J., A. McGovern, C. R. Homeyer, P. J. Marinescu, and C. K. Potvin,

2024: Machine Learning Estimation of Maximum Vertical Velocity from Radar. Artif. \ 5 0 \ z
Intell. Earth Syst., 3, 230095, https://doi.org/10.1175/AIES-D-23-0095.1. - %

°

e,
s
2

°

ML Predicted Probability‘of Hail > 1 inch

3
Schmidt, T. G., and Coauthors, 2024: Gridded Severe Hail Nowcasting Using 3D o3 e
U-Nets, Lightning Observations, and the Warn-on-Forecast System. Artif. Intell. ¢+ e Severe Hail —T°
-\ . Y% Sig Severe Hail

Earth Syst., 3, 240026, https://doi.ora/10.1175/AIES-D-24-0026.1.
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Convective Weather

e Published a review paper on
convective prediction with Al

e Demonstrated real-time predictions for
convection initiation and hazards

e Collaboration at OU on observation

based flash flood nowcasting

o With ExpandAl:
o CONUS high-resolution rainfall
prediction with UQ
o Radar nowcasting for tornadic storms

McGovern, A., R. J. Chase, M. Flora, D. J. Gagne, R. Lagerquist, C. K.
Potvin, N. Snook, and E. Loken, 2023: A Review of Machine Learning for
Convective Weather. Artif. Intell. Earth Syst., 2, 220077,
https://doi.org/10.1175/AIES-D-22-0077.1.

ai2es.org

Talk: A Diffusion-Based Framework for 1-km Spatial Resolution
Precipitation Forecasting over CONUS, Wed 5:15pm 330A

Talk: Al-MLP: Severe Weather Probabilities from Global Al Weather
Models, Wed 11am 362C

Poster: Deep Learning for Probabilistic Nowcasting of Radar
Reflectivity in Tornadic Storms, Monday 3pm, Poster 155

Poster: Short-Range Forecasting of Flash Flood Warnings with
Observation-Based Deep Learning Al, Monday 3pm, Poster 158

1-hour Lead N 6-hour Lead N 9-hour Lead
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Use Inspired: Tropical
Cyclones




TCs — Synthetic Passive Microwave (SPM) Imagery

Input: Geostationary
Satelllte Imagery

TC convectlve

structure NOT visible

ai2es.org

ML Models

* Fully-Connected NN (ANN)
» U-Net Convolutional NN (CNN)
» Score-Based Diffusion (EDM)

Loss Functions

Traditional:
* Mean Absolute Error (MAE)
* Mean Square Error (MSE)
Physically Inspired:
» Weighted MAE & MSE
Uncertainty-Estimating
» Parametric Distributions
(normal, sinh-arcsinh)
» Ensemble Predictions (CRPS)

Output: Synthetic
I\/Ilcrowave Imagery

Images from Major Hurricane Helene (AL09 2024).

Observed Passive
Mlcrowave Imagery




TCs — Real-time Synthetic Microwave Imagery

Real time predictions every 10 minutes

o . /Synthetic Passive Microwave 89\ /Synthetic Passive Microwave 37\
Predictions are TC-following GHz Imagery (Diffusion) GHz Imagery (Diffusion)

- 4-km Mercator S
- 37- and 89- GHz § (A ?

Diffusion model and NN consensus
produced from eight individual U-Nets

Images on TC-Realtime, a CIRA website
containing a variety of satellite and model
products for TC forecasting

Typhoon Man-Yi (WP25 2024) | 89GHz

* 00 -
2 )| 9-GHz H-Pol 2025-Sep-22 00:0C C 37-GHz 2025-Sep-22 00:00
%:' ‘ P ’ Loop | Latest Image | Archive | About Loop | Latest Image | Archive | About
;S i . Time of This Image: 2025-09-22 00:00 Time of This Image: 2025-09-22 00:00

WP24 2025
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TCs - Science Discovery with SPM

AL142020, PC2

Applied PCA to synthetic passive microwave (SPM) imagery. — o e
. C.oreCoId &0 \/ Z:
Goal: learn about TC evolution from Al-generated dataset. e '::

Intensity (kt)

e Histogram and PDF analyses show SPM imagery is closely e T el
aligned with observed microwave imagery (not geostationary) ) .-.;f"'-‘?’ IR -
e Principal component analysis shows SPM imagery exhibits i g s
RPN . consen

NNNNN

distinct spatiotemporal variability from geostationary
e SPM images demonstrate temporal consistency for individual

2020-08-23 2020-08-24
Date (Local Solar Time)

Example Images from AL092017, 2017-08-24 19:45:00
a) IR, ‘)l())gindIB b) Ph;lg\, 89h c) SPQ?]/I 89h

storms
o B y: | .o LW?O:W.O' i m‘“’“‘ -

Related NSF Award: l1S-2509835 . .2 R R T
NSF AI-Ready Testbed for oge” 225¢ —/ﬁs \2‘23‘; 5 = 35 225% ) !i;~
Tropical Cyclones - Planning the -
extension of NOAA’s Hurricane lm 300
and Ocean Testbed (HOT) Brightness Temperature (K)
(CIRA, NCAR, NOAA/NHC) @l RA
https://www.cira.colostate.edu/ml/nsf-ai-ready-tc/ . . COLORADO STATE i

Credit: Marie McGraw, CIRA  “university = oot

ai2es.org
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AI2ES Key Contributions By Area

Trustworthy Al Broadening

Participation

Risk Environmental
Communication Science
Workforce

Development

Ethical, Respon ‘ible, and Us -Inspired Al

ai2es.org



Al for Weather Workforce
Development : K-12

Del Mar College

. CODE IT camp
Middle and high school students

o Fun hands on learning!

o Presentations from undergraduate
researchers as part of AI2ES wide
meeting

o Q&A between campers and
undergraduate researchers: school,
science, careers, and life as a student

e Training middle school and high-
school teachers on Al to take back to

their schools

ai2es.org

’ CODE C/ P




Al for Weather Workforce Development

=

University and College Education
® Developed one of the first community
college Al occupational skills award
o  Multiple cohorts have graduated and
either taken this to their workforce or
transferred to a 4 year college or
university
® AI2ES has trained 83 undergraduates
® AI2ES created a strong pipeline to jobs for
students who would not have considered
these jobs before
O Synergy across institutions
o Knowledge transfer to industry

ai2es.org



Al for Weather Workforce
Development

AI2ES has trained a diverse workforce
(race, gender, LGBTQIA+, level of
experience, first-generation students,
and socioeconomic status)
o HRI has measured diversity in race
and gender
e Discovery Day at DMC brings in 700+
middle and high schools for STEM
awareness
e Spanish language outreach through
news interviews and MyRadar
e ExpandAl funded in Y4 with
SDSU/UCI and FIU

Percent of Members

1

Percent of Members

Gender, by Role

0

0
o

(=)
o

S
o

N
o

Total PlTeam nior Collaborators  Postdocs Graduate Undergraduate
(N=110) (N=5) Perso el (N=27) (N=14) Students Students
(N=20) (N=26) (N=18)

mFemale mMale mNon-binary/gender nonconforming mTransgender mPrefer notto answer

*Totals come from survey results

Race, by Role

140
120
100
80
60
40
20
0
Total PITeam Senior Collaborators Postdocs Graduate Undergraduate
(N=110) (N=5) Personnel (N=27) (N=14) Students Students
(N=20) (N=26) (N=18)
W White or Caucasian M Latino/a/e/x and/or Hispanic
m Asian/South Asian/Southeast Asian/East Asian o Black/African/African Am erican/Afro-C -~
m Multi-Radal m Prefer not to answer
W Middle Eastern or North African
*Members were allowed to select more than one race/ethnicity, so percents may add up to more than




Al for Weather Workforce Development: Postdocs

e Provided full or partial support for 23 [ 151 | [ G8 | PR @
postdoctoral scholars and worked with R A | ,

several affiliated ones

e Learning from each other and others in
AI2ES about research approaches and
concepts outside of their disciplinary
specialties — and applying them in some
cases!




Where have AI2ES alumni gone?

Sector
“ ‘ Private Industry (19)

‘ Graduate School (9)
B Education (6)

” Government (6)

{,‘:I Nonprofit (1)




AI2ES Workforce Development:

& Tutorials

e Summer school 2021 and 2022 build broad
community for trustworthy Al in environmental
sciences including an innovative Trust-a-thon

* Short courses in XAl in summer 2022 and
transformers in Fall 2022

 Tutorial on risk communication in May-June 2022
 Highly cited tutorials on Al/ML for operational

meteorology
Chase, R. J., D. R. Harrison, A. Burke, G. M. Lackmann, and A. Chase, R. J.,, D. R. Harrison, G. M. Lackmann, and A. McGovern,
McGovern, 2022: A Machine Learning Tutorial for Operational 2023: A Machine Learning Tutorial for Operational
Meteorology. Part |: Traditional Machine Learning. Wea. Meteorology. Part Il: Neural Networks and Deep Learning.
Forecasting, 37, 1509-1529, https://doi.org/10.1175/WAF-D- Wea. Forecasting, 38, 1271-1293,
22-0070.1. https://doi.org/10.1175/WAF-D-22-0187.1.

ai2es.org =

Summer Schools

Summer School Registrants

Registrants

X I 313

McGovern, A., Gagne ll, D. J., Wirz, C. D., Ebert-Uphoff, I., Bostrom, A., Rao, Y.,
Schumacher, A., Flora, M., Chase, R., Mamalakis, A., McGraw, M., Lagerquist, R.,
Redmon, R. J., and Peterson, T. (2023) Trustworthy Artificial Intelligence for
Environmental Sciences: An Innovative Approach for Summer School. Bulletin of
the American Meteorological Society. 104, E1222-E1231,
https://doi.org/10.1175/BAMS-D-22-0225.1
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Workforce Development is critical

o “[NSF] AI2ES gave me the skills to transition smoothly into L ure
industry where | get to leverage my new expertise in Al ity
with the new and exciting frontier of weather forecasting
with Al”

e The communication and technical skills | learned while
working for [NSF] AI2ES helped me collaborate with
researchers from a wide array of expertise at Google.”

Randy Chase
Atmospheric Data Scientist

tomorrow.io

ai2es.org



The Future of AI2ES

® AI2ES will finish the NSF funded part of our
work Aug 31, 2026

e The novel work in trustworthy Al for weather
will continue in many ways

o We need to continue to fund large-scale
grants to facilitate convergence research!

® This material is based upon work supported by
the National Science Foundation under Grant
No. RISE-2019758

o Related grants NOAA SDII, NSF ER2, NSF
Testbed, NSF CAIG, NSF ExpandAl, and
several more pending

ai2es.org



Al for Weather is Growing Exponentially: We still
need large-scale focus on trustworthy Al

Data source: Web of Science on 22 December 2025

total meteorology papers
Paper Category: Meteorology and Atmospheric Sciences

20000 ————~ ] ) )

Sev. Wx Keys: Hurricane, Tropical Cyclone, Hail and Tornado

ML Keys: cnn, nn, unet, rf, gbt, pca, eof, kmeans, k-nearest, linreg, logreg, svm, som, transformers
0 . . .

*Does not include new ML journal in AGU
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Publications and AMS talks

ai2es.org

AI2ES talks at AMS 2026 AI2ES Publications

amcgovern@ou.edu

ai2es.org
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