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Key Points:

« Al-based estimates of meteorological images, e.g., for forecasting applications, of-
ten lack sharpness, but there are no well established metrics to measure sharpness
of meteorological imagery.

e This manuscript seeks to close this gap by selecting and exploring different sharp-
ness metrics for meteorological imagery, and by providing guidelines for their use
and interpretation

« We hope that the tools provided here will aid the development of Al algorithms
to provide more realistic meteorological imagery.
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Abstract

Al-based algorithms are emerging in many meteorological applications that pro-
duce imagery as output, including for global weather forecasting models. However, the
imagery produced by AI algorithms, especially by convolutional neural networks (CNNs),
is often described as too blurry to look realistic, partly because CNNs tend to represent
uncertainty as blurriness. This blurriness is undesirable since it might obscure impor-
tant meteorological features. More complex AI models, such as generative adversarial
networks (GANs) and diffusion models, generate images that appear to be sharper, but
that sharpness may come at the expense of a decline in other performance criteria, such
as accuracy. To choose a good trade-off between sharpness and accuracy for a specific
task it is important to quantitatively assess both accuracy and sharpness. While there
are numerous well-established measures for accuracy there is a lack of well-established
measures for sharpness in meteorological imagery. The purpose of this paper is to fill this
gap by 1) exploring a variety of sharpness metrics from other fields, 2) analyzing their
suitability for meteorological applications, 3) suggesting protocols for how to use and in-
terpret them, and 4) demonstrating their use for sample meteorological applications us-
ing vignettes.



1 Introduction

Convolutional neural networks (CNNs) are known to produce blurry imagery, since
CNNs tend to express uncertainty through blurriness. Thus, using CNNs to produce me-
teorological imagery often results in imagery that is too blurry, as illustrated by the GREM-
LIN model discussed in Subsection 1.1. Newer models, such as generative adversarial mod-
els (GANs) and diffusion models (which belong to the class of Generative AI models)
provide much sharper imagery, but there are no established sharpness measures yet in
the meteorological literature that would allow the community to evaluate improvements
in sharpness. Here we seek to establish a group of metrics that can evaluate sharpness
for meteorological imagery, to allow the community to explore trade-offs between accu-
racy, sharpness, and other performance metrics for emulated imagery, in particular in
comparison to observed imagery.

1.1 CNN model “GREMLIN” as a Guiding Example

Throughout this manuscript, we use a specific CNN model, named GREMLIN, as
a guiding example to illustrate the sharpness issue and the corresponding evaluation of
image sharpness. GREMLIN (Hilburn et al., 2020)) is a CNN model that estimates radar
reflectivity from imagery taken by a geostationary satellite. GREMLIN was developed
to provide estimates of radar imagery in regions where radar imagery is not available,
such as in mountainous and remote terrain and over oceans. Fig. 1 illustrates this pro-
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Figure 1. Example of GREMLIN model illustrating blurriness: (a) Observed composite re-
flectivity from radar (ground truth); (b) Corresponding estimate of (a) based on satellite imagery
generated by the GREMLIN (CNN) model. Error statistics for the estimate (b) are included at
the top of the image. It is clear from visual inspection that the estimated image is much blurrier
than the original radar observations, but there is no established measure in meteorology to com-

pare the sharpness of the two images.

cess. Figure 1(a) shows a sample observed radar image (ground truth) and Figure 1(b)
shows the corresponding estimate from GREMLIN, which is much blurrier. We would
like the CNN to provide sharper features. While there are various standard measures for
the accuracy of the estimate (see for example the statistics provided on top of the Fig.
1(b), there is no established means to measure and compare the sharpness of both im-
ages.



1.2 Scope and Organization of this paper

The scope of this paper is to provide several metrics to evaluate the sharpness of
any type of meteorological image — whether it comes from observations, from a physics-
based model, or from an Al-generated model — along with guidelines on how to choose
metrics and how to interpret them. Some of the resulting metrics are straightforward
to include in loss functions. This paper does not explore the consequences of including
these metrics in AI models to produce sharper imagery - that is the topic of future re-
search.

The contents and contributions of this article are as follows:

 Section 2 discusses sharpness-related concepts from the areas of photography and
computer vision.

« Section 3.2 identifies several interpretable metrics from other fields that may be
suitable for meteorological imagery. Ready-to-use implementations will be pro-
vided shortly in an accompanying GitHub repository.

« Section 3.3 provides heatmaps of local sharpness to visualize which features in an
image are considered to be particular sharp by the varying metrics.

 Section 3.4 develops a calibration scheme that allows scientists to more easily in-
terpret the numbers provided by the various metrics.

 Section 4 identifies key properties of interest for sharpness metrics that are rel-
evant for meteorological applications.

« Section 5 provides vignettes that demonstrate the practical use of these metrics
for several different applications, highlighting both their benefits and how to use
them.

» Section 6 provides a final discussion and suggests topics for future work.

1.3 Code availability

Python code implementing the metrics discussed here, plus additional metrics, as
well as code for plotting heatmaps, etc., will be available shortly on GitHub at
https://github.com/ai2es/sharpness/.

2 What is sharpness?

The term image sharpness is used extensively in literature, but it is difficult to find
a consistent definition. In this section we first discuss definitions of sharpness in photog-
raphy, followed by a classification from the computer vision literature.

2.1 Sharpness measures in photography
In photography, the following definition is representative (SLR Lounge, 2023):

Technically speaking, sharpness is defined as the acuity, or contrast, between
the edges of an object in an image. A well-defined edge, one that makes an
abrupt transition from one color or tone to another, thus defining that object
in the photo, is considered to be “sharp.”

Consequently, a common industry standard for measuring the sharpness of imaging sys-
tems, such as cameras, is the rise distance illustrated in Fig. 2. Note that this definition,
and many others, assume the presence of cleanly defined edges in the image to define sharp-
ness. However, meteorological imagery, such as the two examples shown in Fig. 3, may

not include any such edges. In fact, the perception of sharpness can come from differ-

ent sources, such as:



(a)

Figure 2. In photography sharpness is often defined by the rise distance of boundary tran-
sitions. Panel (a) shows a bar pattern (upper half) and the same image with lens degradation
(lower half). Panel (b) illustrates the definition of the rise distance as the width of the red
bracket, where the x-axis indicates the distance traveled (orthogonally) across an edge in the
image and the y-axis indicates the corresponding pixel values in the image. The rise distance

is the spatial distance in an image transition from a 10% intensity to 90% intensity level of the
transition between two values. The blurrier the image, the larger the rise distance. Image source:
Imatest (2023)
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Figure 3. Two examples of meteorological imagery: (a) a satellite image from GOES-16 show-
ing clouds; (b) output of relative humidity from FourCastNet v2 (Bonev et al., 2023), an Al
weather forecasting model. Credit for Panel (b): Jacob Radford (jacob.t.radford@gmail.com) -

source https://aiweather.cira.colostate.edu/.

1. Edges, i.e., the boundary between different “zones”;
2. Textures, i.e., details within a “zone.”

For example, when considering a satellite image of clouds such as shown in Fig. 3(a), the
texture of the clouds might contribute more or less sharpness than the boundaries of the
clouds, depending on which metric is used. Furthermore, consider meteorological images
showing atmospheric variables, such as temperature or relative humidity, see Fig. 3(b)
for an example. A contour line at any threshold could be considered an edge and it is
not obvious which threshold should be chosen for a meaningful analysis of overall sharp-
ness. Thus, we mustn’t restrict ourselves to metrics that focus only on sharpness that
arises from (sharp) edges, such as the rise distance illustrated in Fig. 2. In photography,
there are therefore also sharpness metrics that analyze image frequencies, e.g., by first
applying a Fourier transform, and thus do not rely on the existence of clearly defined edges.
Nevertheless, metrics from photography are of limited use for our purposes, because they



tend to assume that the properties of a single lens are responsible for the blurriness across
an entire image. In contrast, Al-generated imagery exhibits blurriness that differs in two
important ways: 1) blurriness is a local phenomenon, i.e., blurriness tends to vary greatly
across each image, and 2) even in the local space the mechanism behind the blurriness
cannot be represented by properties of an optical lens.

2.2 Sharpness measures in computer vision

The field of computer vision has developed a wider set of sharpness definitions and
metrics that are more suitable for our purpose. Vu et al. (2011) introduced the follow-
ing classification of sharpness metrics:

Modern methods of sharpness/blurriness estimation can generally be classi-
fied into three main trends: 1) edge-based methods, which involve measur-
ing the spread of edges; 2) pixel-based methods, which work in the spatial
domain without any assumption regarding edges; and 3) transform-based
methods, which work in the spectral domain.

For this study we want to limit the number of metrics, while also providing an intuitive
understanding of each, thus selected a set of metrics that have simple mathematical equa-
tions, are easy to understand, appear useful for meteorological applications, and cover

a wide range of different concepts. The following list discusses our selection using the
classification by Vu et al. (2011) above:

1. Fdge-based metrics, such as the rise distance, first identify edges, then analyze their
properties. We do not cover these metrics due to their underlying assumption that
images must have well-defined edges.

2. Pizel-based metrics, aka spatial metrics, include gradient-based methods and meth-
ods based on eigenvalues using singular value decomposition (SVD) (Wee & Parames-
ran, 2008) of images. We cover several gradient-based metrics here. We do not in-
clude metrics based on eigenvalues/SVD, as they are much more abstract, and less
commonly used than gradient-based metrics. Those may be added in future stud-
ies.

3. Transform-based metrics, aka spectral metrics, include methods based on Fourier
or wavelet transforms, and we include metrics based on both transforms.

4. Neural network based metrics were not yet discussed by Vu et al. (2011), because
they did not yet exist. These metrics utilize the latent space of trained neural net-
works to assess image properties, e.g., see Zhang et al. (2018). Those are not cov-
ered here, as their functionality is too opaque (i.e., black box character) for this
first study.

3 Metrics

In this section, we discuss metrics for both accuracy and sharpness. We empha-
size that none of these metrics are new. In fact, most of the accuracy metrics are very
standard, and all metrics have previously been used in other applications. The contri-
bution here is that we explore how to use these metrics for meteorological images. As
mentioned above, to maximize intuitive understanding and transparency of our metrics,
we focus here on metrics defined by mathematical equations, and out of those choose the
simplest ones. This excludes perception-based metrics that utilize trained neural net-
works (Zhang et al., 2018), which while potentially powerful, are fairly opaque. Before
we dive further into these metrics we briefly discuss the assumptions for the images to
be evaluated.



3.1 Image Assumptions

In this manuscript, we assume images to be two-dimensional. Many of the concepts
discussed here also apply to higher dimensional images, but for ease of explanation, we
restrict our discussion to 2D images with the two dimensions denoted as z and y.

Furthermore, we only consider single-channel (i.e., gray) images here. For images
with multiple channels (or containing multiple colors), we currently suggest applying these
measures to each channel separately and combining the results as desired (e.g., taking
min, max, or average). However, an exploration of sharpness for images with multiple
channels is a topic for future research.

Lastly, we assume images to have no missing values (no NaNs).

3.2 Overview of primary metrics

This section provides a quick overview of the primary metrics we focus on. For sim-
plicity we refer to each of these as being computed across an “image,” but they can each
also be computed on smaller subsets of an image, as we will see in Section 3.3. We con-
sider three types of metrics below, 1) image intensity and similarity, 2) sharpness met-
rics based on total variation and image gradients, and 3) sharpness metrics in spectral
space. Each group is described in one subsection.

We distinguish between univariate metrics, which take a single image as input at
a time, and bivariate metrics, which require two input images at a time. Accuracy met-
rics are always bivariate, as one always needs a ground truth for comparison to assess
the accuracy of an image, i.e., to determine how similar one image is to another in terms
of accuracy. Likewise, bivariate sharpness metrics can only be applied to a pair of im-
ages, and the output describes the difference between their sharpness, i.e., how similar
they are in terms of sharpness. In contrast, univariate sharpness metrics are applied to
a single input image and assess the sharpness of just that image. To compare the sharp-
ness of two images, one calculates the univariate metric for each and then analyzes their
difference.

In the following subsections, we provide for each metric a short description, the ab-
breviated name of its implementation in the GitHub repository (in parenthesis), and whether
the metric is univariate or bivariate.

3.2.1 Group 1: Image Intensity and Similarity metrics

While the purpose of this study is to evaluate the sharpness of imagery, it is im-
portant to consider sharpness and accuracy in tandem, namely to make sure that increas-
ing sharpness does not come at the expense of drastically reducing accuracy. We selected
the following three metrics to measure and compare the intensity and similarity of im-
ages.

1. Image Intensity [univariate]: We keep track of the min, mean, and max in-
tensity value of each image, because the dynamic range of an image has a signif-
icant effect on its apparent sharpness. An easy way to increase many sharpness
metrics of an image would be to just increase its dynamic range - which is typ-
ically not what we want. This motivates us to keep track of the intensity of im-
ages.

2. Root Mean Squared Error (rmse) [bivariate]: RMSE is the square root of
the mean squared error (MSE) between two images. This makes it more directly
comparable to mean absolute error (MAE) while retaining the higher penalty for
large deviations. We keep track of RMSE to make sure we do not drastically re-
duce the accuracy of image estimates while trying to make them sharper.



3. Structural Similarity Index Measure (ssim) [bivariate]: SSIM is a simi-
larity measure between two images based on a weighted combination of three sim-
pler comparisons: luminance, contrast, and structure. The product of these mea-
sures gives SSIM. An important note is that SSIM acts on a patchwise rather than
pixelwise basis, and as such can capture more spatial information than pixelwise
methods like MAE, MSE, or RMSE. SSIM values range between 0 and 1, with SSIM =
1 indicating identical images and values approaching 0 indicating increasingly dis-
similar images. SSIM is often cited to better represent image similarity - as per-
ceived by humans - than, for example, RMSE. For details, see Wang et al. (2004).

3.2.2 Group 2: Sharpness metrics based on total variation and image
gradients

Since sharp boundaries result in sharp gradients, it is intuitive to use properties
related to the gradient of an image to assess its sharpness. Total variation is very sim-
ilar to gradient-based methods and is thus included here. We expect this group of met-
rics to respond strongly to sharp edges in an image.

1. Total Variation (tv) [univariate]: Total variation measures how much an im-
age changes if it is shifted slightly. This can measure the sharpness of edges be-
cause when a sharp edge is shifted slightly it will cause a larger difference than
if a smoother edge is shifted the same amount. TV values close to 0 indicate very
smooth images, while sharper images will have larger TV values. It is important
to note that TV is not normalized by image size, so TV values for images (or blocks)
of different sizes are not comparable, and it is normal to get TV values that are
very large compared to most other metrics described here.

2. Mean Gradient Magnitude (grad-mag) [univariate]: At each pixel, we can
compute gradients in both the horizontal (x) and vertical (y) directions; the mag-
nitude of the gradient at that pixel is then the norm of the vector formed by those
directional gradients. The grad-mag is the mean of these gradient magnitudes across
the image, and as such gives a summary statistic that reports, on average, how
rapidly intensity changes occur within the image. More rapid intensity changes
generally correspond with sharper images, so higher grad-mag values indicate a
sharper image, with grad-mag = 0 indicating a completely uniform image with
no variation.

3. Gradient Total Variation (grad-tv) [univariate]|: Gradient total variation
is the total variation of the gradient magnitude map, where the gradient map is
described in grad-mag above, and total variation is as described in TV. Because
both TV and gradients measure sharpness, the gradient TV is really giving infor-
mation about how sharp the sharpness map is - i.e., are areas of rapid change (as-
sociated with sharpness) themselves sharp. In practice, this second-order sharp-
ness seems to correspond with sharpness.

4. Gradient RMSE (grad-rmse) [bivariate]: In this bivariate metric, we com-
pute the RMSE not between two images directly, but between two gradient mag-
nitude images. We compute the gradient magnitudes as in grad-mag above, but
rather than averaging those across a single image to obtain a statistic, we com-
pute the RMSE between the gradient maps for two distinct images. As in general
for RMSE, values closer to 0 indicate more similarity, while larger values indicate
more dissimilarity. By taking the RMSE of gradient magnitude maps, we are mea-
suring how closely aligned regions of rapid change are between the two images;
i.e., measuring how well sharp edges correspond between the two images.

5. Laplace RMSE (laplace-rmse) [bivariate]|: Laplace RMSE is very similar to
gradient RMSE, but instead of taking the magnitude of the gradient vector at each
pixel, we compute the divergence of the gradient at each pixel, which is a way of
quantifying the local shape of the gradient vector field. By taking the RMSE of



two such divergence maps, we are computing how similar the shapes of edges are
between two images. As with any of these RMSE measures, values close to 0 in-
dicate that the two images have very similar Laplacian maps, while larger values
indicate larger differences.

3.2.83 Group 3: Sharpness metrics in spectral space

The last set of metrics seeks to analyze the sharpness of images in spectral space.
The idea it to first apply a Fourier or wavelet transformation, and then to analyze im-
age properties in the corresponding spectral representation of the image.

1. Fourier RMSE (fourier-rmse) [bivariate]: When taking the 2D Fourier trans-
form, the resulting complex-valued phase space can be reduced down to the power
spectrum by taking the absolute value of the complex values at each frequency,
which gives another real-valued 2D array. Fourier RMSE is then the RMSE be-
tween the power spectra of the two images being compared. Note that in the power
spectrum, spatial coordinates correspond to frequencies, which are all weighted
evenly in this RMSE computation.

2. Fourier Total Variation (fourier-tv) [univariate]: We once again start with
the power spectrum, but instead of comparing two power spectra, we take the To-
tal Variation of the power spectrum for a single image. The power spectrum con-
tains information about sharpness (as high-frequency information can be inter-
preted as “sharp”), and TV measures how sharp the power spectrum is, so like Grad-
TV, we have some degree of second-order sharpness.

3. Spectral Slope (spec-slope) [univariate]: As mentioned in FTV, the power
spectrum of an image contains information on how sharp an image is — in partic-
ular; the distribution of high vs low-frequency information. Spectral slope mea-
sures this distribution, and is very sensitive to blurring. It is also entirely invari-
ant to uniform changes in intensity — i.e., rescaling the image will not change the
spectral slope value. Values are all negative, with more negative values indicat-
ing less sharp images.

4. Wavelet Total Variation (wavelet-tv) [univariate]: WTV is based on the
wavelet transform, which takes in an image and (for one level) yields a set of four
output arrays, the approximation coefficients, and three sets of detail coefficients.
The detail coefficients contain information about variation in the image at var-
ious scales and orientations, while the approximation coefficient contains informa-
tion about average intensities, so by summing the absolute value of all of these co-
efficients, we arrive at a notion of total variation in the image utilizing wavelets.
Like Total Variation, we view increasing values of WT'V as having higher sharp-
ness and note that WTV is also not normalized by the size of the image, so WTV
values for different image (or block) sizes are not comparable.

3.3 Heatmaps and Stats Plots

Heatmaps: Since meteorology is a very visual field, we believe it is essential for
all of the metrics to not only provide a single number for quantitative assessment/optimization
of sharpness or accuracy, but also a visual representation of which features in an image
are perceived to be particularly sharp or blurry. To provide such visual feedback we gen-
erate sharpness heatmaps by evaluating small patches of each image and displaying the
resulting local information as an image, i.e., the heatmap of an image for a specific met-
ric. Throughout the experiments in this paper, we use square blocks with edges that are
1/8th the length of the horizontal edge length of the input image. We use overlapping
blocks, to avoid the issue that can arise with disjoint blocks where an edge lying along
the border between two blocks is not detected by either. For most experiments, adja-
cent blocks overlap 75% of their area, but for blocks smaller than 8x8, because of the



discrete nature of pixels, the overlap may be less than 75% as we enforce a minimum block
stride of 2 pixels. The output heatmap reports the values for each block on the central
pixels of that block, but because of the overlap, each block includes information from

a larger region than its value is outputted to. For all metrics that utilize the Fourier trans-
form, we implement Hanning windowing on each block to minimize the edge effects on

the Fourier transform. Each heatmap can be shown on its own or used as an overlay over
the input image(s) to indicate areas with very high or low values of each metric.

Stats plots: In addition, we keep track of the min, mean, and max of all heatmaps
and show those statistics in a separate graph, which we will refer to as stats plots. Heatmaps
have already been used before, see Vu et al. (2011), while the stats plots are introduced
here. They become particularly important (and less trivial) once they are combined with
the calibration procedure in Section 3.4.

Figures 4 to 6 illustrate the use of the heatmaps and stats plots for one sample of
the GREMLIN model. We use the following colors to indicate the different types of heatmaps:

« Gray indicates the original image, i,e., image intensity.

» Blue indicates values of univariate metrics, i.e., metrics that are calculated from
an individual image (no comparison).

¢ Red indicates values of bivariate metrics, i.e., metrics that compare two images.
Throughout this paper, all bivariate metrics indicate the comparison of each im-
age to the original image, which is always shown on the top left. Thus bivariate
metrics for the original image itself are always zero.

Dealing with NaNs: Across all heatmpas yellow indicates individual pixels with
invalid values (NaNs). We have observed NaNs only for two metrics, ssim and spec-slope.
Both of them are undefined in areas in the original image that are identically zero. In
future versions we plan to test for such cases during calculations and find better ways
to deal with these cases, such as outlined, for example, by Vu et al. (2011). Note that
the statistics of the heatmaps used in the stats plots, i.e. min/mean/max values of the
heatmaps, are taken across all valid pixels, i.e., pixels with NaNs are currently ignored
in those statistics.

The heatmaps in Fig. 4 for rmse and ssim for the original image are zero through-
out (with some NaNs for ssim), since the image is compared to itself. The correspond-
ing heatmaps for the estimate show the largest errors at the high-intensity regions of the
image. That is to be expected, as it is easy for GREMLIN to predict areas with no sig-
nificant signal, and the majority of GREMLIN errors are always in areas with high in-
tensity.

The heatmaps in Fig. 5 illustrate sharpness according to the gradient-based met-
rics. The heatmaps with blue color maps (tv, grad-mag, and grad-tv) indicate univari-
ate sharpness metrics, i.e. they show the sharpness of each individual image (no com-
parison), with higher values (darker blue) indicating higher sharpness of the image. Ac-
cording to there three metrics the original image is much sharper than the estimate, which
is most apparent in the high intensity regions. The heatmaps with red color maps (grad-
rmse and laplace-rmse) are bivariate sharpness metrics. They show the difference of sharp-
ness between each image and the original image (so, trivially, they are zero for the orig-
inal image). As expected the differences are largest roughly where the univariate met-
rics indicate the areas of highest sharpness in the original (observed radar) image.

The heatmaps in Fig. 6 illustrate sharpness according to the sharpness metrics in
spectral space. The heatmap in red, fourier-rmse, which is bivariate, indicates very spe-
cific areas of sharpness, difference also mostly in the high-density areas of the original
image. Note how much more focused the areas of sharpness difference are in contrast to
the gradient-based methods. The heatmaps in blue, fourier-tv, spec-slop, and wavelet-
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Figure 4. Comparison of observed radar image and its estimate from a neural network
model, GREMLIN, using metric group 1: (a) original image and GREMLIN estimate, along
with heatmaps for rmse and ssim for both images; (b) stats plots that track the min, mean, and
max values of the heatmaps for both images. Original image intensity is shown in gray and bi-

variate metrics are shown in red.

tv, indicate the sharpness of each individual image (no comparison). fourier-tv indicates
a relatively narrow band of sharpness not unlike the gradient-based univariate metrics.
wavelet-tv indicates an even narrower band of sharpness in each image. spec-slope stands
out indicating a very broad area of sharpness, including areas in which the original im-
age appears to have no signal. The reason is that spec-slope has a very unusual prop-
erty, namely it is invariant to the intensity of the signal, i.e. it responds to sharp features
with small intensity difference just as much as to those with high intensity difference.
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3.4 Protocol to aid interpretation of each metric’s values

One issue with the results provided in Figures 4 to 6 is that it is hard to interpret
the scale of the different metrics. What constitutes strong sharpness? We propose the
following procedure to give more meaning to the values of the various metrics:

Proposed algorithm for the comparison of an image pair (original, estimate):

1. Take the original image and create a sequence of increasingly blurred copies, by
applying Gaussian blur with ¢ in increasing from 0 to some chosen value, omax-

2. Calculate all metrics for the blurred versions with respect to the original image.

. Calculate all metrics for the estimated image with respect to the original image.

4. Generate a stats plot for the blurred images, and indicate the corresponding val-
ues for the estimated image by horizontal lines in the stats plots.

5. For each metric, find in the stats plots the z-value where the horizontal line from
the estimate (min, mean or max) intersect the curve of values (min, mean or max)
from the blurred images. This is called the Equivalent Gaussian blur value,

for the estimated image for each metric.

w

Tequivalent:

The Equivalent Gaussian blur value, Tequivalent for the estimated image represents for
each metric the Gaussian blur operation that - when applied to the original image - would
yield an identical metric value as the estimated image.

Figures 7 to 12 illustrate these ideas for a GREMLIN example. The first two steps
are illustrated in Figures 7 to 9, each one showing - for one group of metrics - the orig-
inal image, the blurred versions, their heatmaps and the corresponding stats plots.

Radar OBS Blur: 2.00 Blur: 4.00 Blur: 6.00 Blur: 8.00 Blur: 10.00 intensity

rmse rmse

&

ssim _ssim ssim

Figure 7. Metric heatmaps for the original radar image, and for a progression of increasingly
blurred versions of that image, using Gaussian blur with ¢ ranging from 0 to 10, and using met-

ric group 1.
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Figure 8. Metric heatmaps for the original radar image, and for a progression of increasingly
blurred versions of that image, using Gaussian blur with ¢ ranging from 0 to 10, and using met-

ric group 2.
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Figure 9. Metric heatmaps for the original radar image, and for a progression of increasingly
blurred versions of that image, using Gaussian blur with ¢ ranging from 0 to 10, and using met-

ric group 3.
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Figures 10 to 12 show Steps 3 to 4, namely tying the metric vales of the blurred
images to those of the estimated image.
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Figure 10. Comparison of observed radar and GREMLIN estimate using metric group 1:
(a) heatmap comparison of observed and estimated image (same as Fig. 4(a)); (b) stats plots
from a series of blurred images, along with horizontal lines indicating values of estimated im-
age - all with respect to the original image. Thus the blue/red/yellow data points indicate the
max/mean/min values of the increasingly blurred image, while the horizontal blue/red/yellow

lines indicate the max/mean/min values of the GREMLIN estimate.
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It remains to perform Step 5, namely to identify and interpret the equivalent Gaus-
sian blur value for the estimated images from Figures 10 to 12. We choose here to use
the mean value of the metrics for this step, which leads the following results (values
are estimates based on visual inspection):

Table 1. Equivalent Gaussian Blur

Intensity RMSE SSIM TV
Tequivalent ~ 0. > 10 ~5 ~ 2
Grad-Mag Grad-TV ~ Grad-RMSE Laplace-RMSE
Tequivalent ~ 2.5 ~2 ~ 3.5 > 10
Fourier-RMSE  Fourier-TV ~ Spec-Slope Wavelet-TV
Tequivalent > 10 ~1 ~ 0.5 ~1

Observations: Focusing on the univariate sharpness metrics, the gradient-based
sharpness metrics place the image estimate at about the blurriness of applying a Gaus-
sian filter with ¢ around 2 to 2.5, while the spectral metrics consider the estimate to be
much sharper, namely corresponding to ¢ around 0.5 to 1.

4 Important Properties of Sharpness Metrics for Meteorological Im-
agery

In this section, we discuss properties of sharpness metrics that are important when
using them for meteorological imagery. Note that each application requires different prop-
erties. For example, in some applications, one may want a sharpness metric that is in-
variant to the normalization of the intensity values of an input image, while in other ap-
plications one may want the metric to be very sensitive to such changes. These prop-
erties should therefore not be seen as requirements. Instead, it is a list of properties that
we believe users need to know about to select metrics for specific applications and to in-
terpret their outputs of these metrics appropriately. The following are key questions that
we think are important for users to ask about the sharpness metrics:

1. Which sharpness metric best measures the type of sharpness features critical for
a specific application? For example, does the metric solely focus on edge transi-
tions?

2. What kind of factors, e.g., image size, resolution, normalization of intensity val-
ues, impact the values of the sharpness metric?

3. How should the sharpness values be interpreted? Do the absolute values have mean-
ing, or should one only consider the increase/decrease of values?

4.1 Response to adding noise

In this section we consider the question of how the various metrics respond to adding
noise to an image, to better understand what changes to an image most strongly impact
the sharpness values. In particular, if a sharpness metric is used in a loss function of a
neural network to increase sharpness of an image, a metric that increases strongly with
noise might push the network to simply add more noise to the image, which then needs
to be counteracted by other means, e.g., increased weight on similarity metrics.

As illustrative example we use a satellite image of a cloud, gradually add noise to
it, and track the values of the various metrics. The noise is added separately for each
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pixel, by drawing from a Gaussian distribution with o set to be a factor times the max-
imal intensity of the original image. The factor is provided on top of the first row of im-
ages in Figures 13 to 15.

Satellite Noise: 0.20

Noise: 0.40

intensity

rmse rmse rmse rmse rmse rmse

ssim ssim Ssim ssim ssim ssim ssim

(a)

Figure 13. Response of metrics from group 1 to adding noise to a satellite image

Observations: All metrics increase with increasing noise in the image, but to vary-
ing degree. wavelet-tv seems to be last affected by the impact of noise, with the mean
increasing by less than 100%, while all other sharpness metrics increase dramatically with
noise. Thus, wavelet-tv stands out as being the most invariant to the addition of noise
in an image.
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4.2 How do the metrics respond to a single edge with varying degree
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Response of metrics from group 1 to a single line that is gradually blurred

(a)

Figure 16.

Observations: Figures 16 to 18 show a general trend of decreasing sharpness as
the single edge is blurred (which is to be expected) but there are some interesting vari-
ations within that trend. We first note that for this example, a large proportion of the
blocks in the heatmaps are viewing regions of the image that are uniformly black, and
as such have no interesting features. Because of this, the mean and minimum statistics
in the plots on the right are heavily weighted by these “minimal information” blocks, so
we will primarily be looking at the max value curves for this analysis.

The similarity measures (RMSE and SSIM) exhibit very much the behavior that
we would expect — as the line is blurred, the images become less and less similar and the
metrics reflect that. It is interesting to note that because SSIM returns NaNs in the uni-
formly black region, which are then not included into the mean/min/max statistics, the
mean statistic in this case is a mean over non-trivial blocks, and as such follows the max
curve much more closely.

We next look at the gradient-based metrics in group 2. One immediate feature that
is interesting to note is that all the univariate metrics in this group (TV, grad-mag, and
grad-tv) are initially fairly consistent over relatively low levels of blur, and don’t really
start falling off until blur level 2.0. After this point, these metrics fall off quite evenly,
and the heatmaps show the region around the line reducing in sharpness and diffusing
outwards, which is precisely what we would expect. The bivariate metrics (grad-rmse
and laplace-rmse) do not exhibit the same initial delay in response. Instead, they show
the difference almost immediately (with laplace-rmse being particularly quick) and then
the differences taper off. In looking at the heatmaps, we note that the strongest response
is in the very center of the line, where we know from grad-mag the gradient magnitudes
are becoming smaller, while there is a secondary (weaker) response along the edges of
the initial line, where there are now larger gradients than when that region was uniformly
dark.

Finally, we examine the spectral methods in group 3, which show the most vari-
ation within the same group. Fourier-rmse apperas to have similar trends to the bivari-
ate gradient-based methods, but with a more even response throughout the period of blur-
ring. From the heatmaps, this response appears to be very concentrated in the very cen-
ter of the line. On the other hand, fourier-tv shows an interesting nonlinearity over the
first couple levels of blur, with a larger than expected drop in sharpness between blur
0.5 and 1.0, perhaps indicating an initial stability to small levels of edge blur, and once
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this initial stability has been bypassed, the fall-off resembles TV and grad-tv. Wavelet-
tv displays almost no change in the overall statistics in the sensitivity plot on the right,
but we can see in the heatmaps some slow diffusion of sharp regions away from the high
central ridge that remains in the increasingly blurry line. This is particularly good in-
formation, as it tells us that wavelet-tv does not respond strongly to edge blurriness.

Spectral slope is similar to SSIM in that because the uniformly dark areas return
NaNs, all three of mean, min, and max are relevant for this analysis. The most notable
feature of the sensitivity plot is the shark-tooth pattern most apparent in the max (and
to a lesser extent in the mean). Looking at the heatmaps, we note that the highest re-
sponse values are right at the farthest extents of where the blurred intensity values are
no longer uniformly 0 — this is a result of spectral slope being intensity-invariant, and
thus yielding strong results even in very dark regions. This leads to the hypothesis that
as these blur values spread through individual blocks, there are particular locations within
those blocks that lead to stronger responses. If we look at the mean response (which is
more resistant to this shark-tooth pattern), we see that the sharpness falls off initially,
then more or less stabilizes at blur 2.0 — this matches with what we have seen elsewhere
of spectral slope being quite sensitive to small levels of blur.
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4.3 Computational Complexity

The computational complexity of each of these metrics can be expressed in terms
of both big O notation, which expresses how well the computational complexity scales
with increasing numbers of pixels in each block, and in terms of actual wall clock time
to run on a single representative example image. Both expressions are represented in Ta-
ble 2, and more details on the big O complexity for each metric can be found in Appendix
Appendix A. Note that in Table 2, the n references the number of pixels in a given block
when computing heatmaps — thus, if the edge length of a heatmap block is doubled, the
n in column 2 will increase fourfold.

The wall clock computation times were intended to be representative of how we see
these metrics being used in practice. In both the 64x64 and 128x128 case, each met-
ric heatmap is computed 5 times using block sizes of 8 x8 and 64 x 64 respectively. In
these computations, there are numerous other steps that are in common between the two
image sizes, such as subsetting and collecting results from individual heatmap blocks,
which likely explains why we do not see as large an increase as might be predicted when
moving from 64 x 64 to 128 x 128 images.

Table 2. Computational Complexity of Metrics

Metric Big O 64 x 64 wall clock 128 x 128 wall clock
RMSE O(n) 0.0103 sec 0.0113 sec
SSIM O(n) 0.1379 sec 0.1580 sec
vV O(n) 0.0260 sec 0.0295 sec
Grad-mag O(n) 0.0447 sec 0.0509 sec
Grad-TV O(n) 0.0414 sec 0.0464 sec
Grad-RMSE O(n) 0.0385 sec 0.0446 sec
Laplace-RMSE O(n) 0.0197 sec 0.0223 sec
Fourier-RMSE ~ O(nlogn) 0.0852 sec 0.0946 sec
Fourier-TV O(nlogn) 0.0807 sec 0.0908 sec
Spec-slope O(nlogn) 0.9053 sec 1.2101 sec
Wavelet-TV O(n) 0.1662 sec 0.1740 sec

Note: all wall clock times are an average from five similar computations
with the same base image.

4.4 Effect of shifting and scaling intensity range

For almost all of these metrics, the effect of scaling the intensity range will be to
proportionally scale the output value, while shifting the intensity range will not change
the output value. The exceptions to the rule are that SSIM, Spectral Slope, and Wavelet-
TV are affected by shifting the intensity range, and that SSIM and Spectral Slope are
invariant to scaling the intensity range.

Let us first address the effect of shifting the intensity range. Almost all of the met-
rics we utilize are based in some way off of pixel differences, whether between images (as
in RMSE) or between pixels (as in TV or gradient-based methods). Whenever we are
taking a difference of two quantities, if both of those quantities have had the same con-
stant added or subtracted to them, then those constants cancel and the difference ulti-
mately remains the same. This establishes that RMSE, TV, Grad-mag, Grad-TV, Grad-
RMSE, and Laplace-RMSE are all invariant to shifts in intensity. Next, we note that if
we take the FFT of a shifted function, the output will shift by some amount that depends
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only on the original shift, but not the function — that is,
FFT(f(z) + A) =FFT(f(z))+ B

where B is dependent only on A. This establishes that Fourier-RMSE and Fourier-TV
are invariant to shifts.

On the other hand, we observe that as spectral slope is calculated as the slope of
a line fit to the log /log plot of the FFT, in the log the shift in Fourier space turns into
a nonlinear scaling, which can affect the slope of the fitted line. SSIM is based on the
product of three components: luminance, contrast, and structure. While contrast and
structure are based on the variances and covariances (respectively) of the inputs, lumi-
nance is explicitly based on their means in a way that adding or subtracting a constant
will affect the output in nonlinear ways. Similarly, Wavelet-TV is based on the coeffi-
cients of the Haar wavelet transform, both the detail and approximation coefficients. The
detail coeflicients of a Haar wavelet transform are based on pixel differences, which will
be invariant to shifts; however, the approximation coefficients capture information about
the mean, and as such will be affected by shifting the mean, and thus Wavelet-TV will
not be invariant to such shifts.

We can now address the effects of scaling the intensity range by a constant. We will
provide here details for the two measures that are invariant to scaling of intensity range,
while the details for all other metrics can be found in Appendix Appendix B.

The SSIM of two image patches z and y is given by

(2papy + 1)(202y + c2)

SSIM(zx,y) =
@) = (a2 T a)(02 + o7 1 o)

where p,, 1, are the means of x and y respectively, o, 0, are the standard deviatiosn
of  and y, 0,y is the covariance of x and y, and c¢; and ¢, small constants.

If we scale x and y by some common factor k, this becomes

(kg piy + k%e1) (k20 4, + k?c2) k4

IM = = — SSIM = SSIM
SSIM(k, ky) (F2p2 + k202 + k2c1) (K202 + k202 + k2co) k4 SSIM(z, y) = SSIM(z, y),

where it is important to note that ¢; and ¢, are proportional to the square of the dy-
namic range of the input images, so will also scale by k2 if 2 and y are scaled by k.

On the other hand, for spectral slope, we note that the FFT is a linear operation,
so FFT(kX) = kFFT(X), as is the polar averaging of the power spectrum to obtain
a set of points {P;}, or with scaling {kP;}. At that point, to compute spectral slope we
take the log of these averaged values, and by log rules we see that

log(kP;) = log(P;) + log(k).

That is, the scaling turns into a vertical shift in these points, which does not affect the
slope of the line that is ultimately fit to these lines, and thus spectral slope is invariant
to intensity scaling. For more details, see Vu et al. (2011).

4.5 Response to change in resolution

The response to changing the resolution (or block size, when computing heatmaps)
of an image separates these metrics into two distinct groups: those that involve Total
Variation, and those that do not. Most of the metrics other than total variation utilize
a spatial mean as a way of collating the statistic down into a single number, and because
this mean is normalized by the number of pixels included in it, the metric becomes in-
variant to the size of block or resolution of image. The metrics for which this holds true
are: RMSE, Grad-mag, Grad-RMSE, Laplace-RMSE, and Fourier-RMSE.
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Two special cases are SSIM and Spectral Slope. SSIM utilizes even smaller win-
dows within the blocks or images, with the output value being an average across those
windows. However, even as the size of those windows increases, the statistic computed
on each window is based on the mean, standard deviation, and covariance between cor-
responding windows, all of which are normalized quantities, so the SSIM value should
be (theoretically) invariant to window size. On the other hand, Spectral Slope uses a fun-
damentally quite different approach to summarizing the data, by first doing polar av-
eraging in spectral space, and then fitting a line to the log of the resulting data points.
However, the line fitting operation is invariant to the number of points, so long as the
data are consistent, so spectral slope is also ultimately invariant to change in resolution.

While these operations are all theoretically invariant to change in resolution, it is
worth noting that by changing resolution, one is also changing the amount of informa-
tion present in the image. This may end up changing the value of the metric in some way,
but overall the results should be similar across resolutions.

On the other hand, all the metrics utilizing total variation (TV itself, as well as Grad-
TV, Fourier-TV, and Wavelet-TV), utilize a sum to collate spatial information into a
summary statistic. Because these sums are unnormalized, the ultimate value of a TV
metric is expected to increase linearly with the number of pixels, and thus as the square
of edge length. This is true of TV, Grad-TV, Fourier-TV, and Wavelet-TV, as even though
the metrics other than TV itself are acting on derived products (the gradient magnitude
map, the power spectrum, or the wavelet coefficients) those derived products all have
similar numbers of elements as there are pixels in the original image.

5 Vignettes

This section provides several vignettes that illustrate the use of the sharpness met-
rics for meteorological applications.

5.1 Bias Correcting Subseasonal Forecasts - A Vignette by Maria Molina

Forecast uncertainties from numerical models at lead times of three to four weeks
(i.e., subseasonal) can be reflected as blurriness (Molina et al., 2023), an undesirable prop-
erty for extreme events particularly along coasts, mountain ranges, and urban-to-rural
population transitions where finer-scale details are needed by stakeholders. Two U-nets
were trained to bias correct 2-m temperature week 3 forecasts from a hindcast (1999-
2020) produced with the Community Earth System Model version 2 (CESM2; Richter
et al., 2022). One of the U-nets was trained using one input channel which was the CESM2
week 3 hindcast of 2-m temperature, while the other U-net was trained using four in-
put channels consisting of the same CESM2 field with normalized latitude, longitude,
and model terrain height as additional channels. The corresponding ECMWF 5th gen-
eration reanalysis (ERAB; Hersbach et al., 2020) was used as the ground truth and MSE
was used as the loss function run for 20 epochs.

Here we use gradient magnitude (grad-mag) and Laplace-RMSE to assess sharp-
ness in the CESM2 hindcast and U-net bias corrections as compared to ERA5 for the
southern part of South America, a region that contains complex topography, coastlines,
and several cities.

Note that we tried several different bivariate sharpness metrics in addition to ‘laplace-
rmse’ from the GitHub repo, including ‘grad-ds’, ‘grad-rmse’, ‘laplace-rmse’, ‘hist-int’,
and ‘wavelet-similarity.” All of them distinguished between the sharpness of CESM2 and
the ML bias-corrected images, but only ‘laplace-rmse’ provided a clear signal to distin-
guish between the two ML bias-corrected images (4-channel vs 1-channel).
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Figure 19. Comparison of 1-channel and 4-channel U-net bias correction of CESM2 2-m
temperature week 3 forecasts. Left panel illustrates trade-offs between MSE (x-axis) and Laplace-
RMSE (y-axis) for CESM2 and the two U-nets evaluated against ERA5 (ground truth), as indi-
cated in the legend. Panels on the right show grad-mag for the same sample in CESM2, ERA5,

and the two U-nets, with the sample’s min and max grad-mag indicated on the respective image.

Plotting MSE against Laplace-RMSE shows that including terrain height informa-
tion and geographic coordinates as input channels for the U-net (4-channel) helps reduce
trade-offs between accuracy and sharpness during bias correction (Fig. 19; left panel).
Grad-mag for a specific sample of 2-m temperature shows that both U-nets increase sharp-
ness as compared to the original forecast produced by CESM2, and have a much closer
resemblance to the ground truth’s sharpness (Fig. 19; right panels). Interestingly, grad-
mag indicates that both U-nets have comparable sharpness (confirmed with grad-RMSE,
not shown), while Laplace-RMSE indicates that sharpness is greater in the 4-channel U-
net, likely because Laplace-RMSE incorporates more spatial information than grad-mag
by using the divergence of the gradient rather than the magnitude of the gradient.

5.2 Evaluating Sharpness of Multiple Datasets - A Vignette by Jason
Stock

In the previous sections we detail how individual metrics can be used to evaluate
the sharpness for a given sample. However, when considering if one model’s output or
dataset is sharper than another, we need a method that allows for a comprehensive com-
parison. To address this, we augment samples from the entire GREMLIN dataset (1,798
total samples) to emulate different model output, showing a comparison of their distri-
butions from a single sharpness metric and make statistical conclusions.

Similar to the experiments in Subsection 3.4, we augment the samples using Gaus-
sian blur with an increase in standard deviation, specifically ¢ = 5,10, 20. This effec-
tively yields four different datasets that we will compare. Figure 20 illustrates this re-
sult for a single sample aligned next to the ground truth MRMS. Thereafter, we com-
pute our sharpness metric for all samples in each of the datasets. For evaluation purposes
we choose the Mean Gradient Magnitude (‘grad-mag’) for our sharpness metric, but any
of the other scalar metrics could be subsisted.
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(a) MRMS (d) 0=20

Figure 20. An individual sample with Gaussian blur applied for different o levels.

We plot the kernel density estimation (KDE) for each of the datasets to visualize
a smoothed representation of the underlying distribution. In Figure 21, we see that MRMS
is positively skewed with a greater maximum sharpness relative to the other o levels. Fur-
thermore, the sharpness values decrease along with the spread for higher levels. Note the
mean and standard deviations are associated with the sharpness metric for each dataset.
With a direct comparison using Welch’s independent samples t-test, we conclude that
MRMS demonstrates a statistically significant improvement in sharpness over the other
datasets (e.g., comparing to o = 10, t-statistic = 31.49, p-value < 0.001). When mak-
ing relative comparisons, it is important to keep a consistent scale across datasets. How-
ever, the process we define can simply be applied to other datasets, such as output from
individual models, along with different sharpness metrics.

0 5 10 15 20
Mean Gradient Magnitude

Figure 21. Kernel density estimation of ‘grad-mag’ computed over all data samples in each

dataset defined by o. The dashed line represents the mean and standard deviation.
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5.3 Studying how Sharpness Varies as a function of ML architecture -
A Vignette by Michael Yu and Amy McGovern
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Figure 22. Comparison of the output of UNet MSE, UNet Grad, and CNN MSE for GREM-
LIN MRMS Reflectivity predictions along with the truth values. (a) Density plot of the mean
gradient magnitude (x-axis) shows the magnitude values for all predictions and truth. (b) Den-
sity plot of the spectral slope (x-axis) shows the slope values for all predictions and truth. (c)

Case study example of MRMS Reflectivity predictions and truth from 2019-04-19 21:59.

With sharp and accurate models as a goal for most machine learning models for
weather prediction, we examine the effects of changing both model architecture and loss
function. We plan a more in-depth analysis in a follow-up paper. In Figure 22, we ex-
amine the effect of varying ML model architectures and loss functions using the sharp-
ness metrics mean gradient magnitude (grad-mag) and spectral slope (spec-slope).

Three models, a UNet with MSE loss (UNet MSE), a UNet with gradient magni-
tude MAE (UNet Grad), and a CNN—UNet architecture without the skip connections—
with MSE loss (CNN MSE), were trained on GREMLIN CONUS2 data (Hilburn et al.,
2020) to predict MRMS reflectivity from ABI & GLM data. We then examined the mea-
sured sharpness of each model on a specific test day. The ML predictions and the truth
for April 19, 2019 are shown in Figure 22c. As the case study shows, UNet Grad was a
very poor predictor, since its loss function only penalizes the gradient of the image, not
the actual values. UNet Grad is therefore free to add a large constant to the image val-
ues without any penalty. However, since this model is trained to only focus on model-
ing the gradient correctly, it tends to add a constant similar to the mean grad-mag of
the ground truth (Truth) distribution to all outputs. This results in predictions with higher
sharpness values and lower accuracy because the shape of the UNet Grad distribution
differs from the Truth, which is why we included it in this study.

Plotting the grad-mag (Figure 22a) shows that the UNet MSE and CNN MSE have
similar distributions whereas the UNet Grad has a higher mean gradient magnitude with
values closer to the center of the Truth distribution. Overall, the UNet Grad performs
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poorly in terms of capturing the shape of grad-mag (Panel a), in addition to perform-
ing poorly in actual values (Panel ¢), which was unexpected.

Plotting the spectral slope (Figure 22b) shows that the UNets have similar spec-
slope distributions whereas the CNN MSE has noticeably higher spec-slope values than
both UNets, with all three prediction distributions being lower than the truth distribu-
tion. Here, the CNN MSE’s higher sharpness (spec-slope) values correspond to closer
predictions to the truth in the case study (Figure 22c), so it performs best in terms of
spectral slope.

In this preliminary study, the two sharpness metrics behave differently as a func-
tion of model architecture and loss function. Grad-mag was more affected by the loss
function whereas spec-slope was more affected by the model architecture. In one case
(grad-mag) higher sharpness values led to less accurate predictions, pointing to a need
to not solely evaluate models by sharpness.

6 Contributions and Future Work

Obviously, we have only scratched the surface here of how to best measure sharp-
ness for meteorological imagery. Nevertheless, we hope that this study serves as the start-
ing point for a much larger discussion on this topic, realizing that different metrics are
most suitable for different applications and purposes.

The key contributions of this paper include:

1. Starting the important discussion of how to best measure sharpness for meteoro-
logicaly imagery.

2. Identifying three groups of interpretable metrics that may be a good first basis
to evaluate similarity and sharpness of meteorological imagery.

3. Providing a code base for the community to quickly adopt these metrics for their
own research, including visualizations of local sharpness (heatmaps).

4. Developing a protocol to use to interpret the metric values for a given pair of im-
agery, consisting of our proposed stats plots in combination with a calibration method
that uses gradual application of blur to the original image (equivalent blur value).

5. Analysis of some of the properties of the different metrics - although, as pointed
out in future work below, that study is far from finished.

6. Providing vignettes that demonstrate how these metrics can be used for practi-
cal applications.

We suggest to expand this study by exploring the following topics:

1. A more in-depth study of which kinds of sharpness the various metrics primar-
ily focus on, e.g. from edges vs. texture.
2. Adopting a better way to avoid NaNs as output of metrics, such as discussed in
Vu et al. (2011) for spec-slope.
3. Adding some of the metrics discussed in Section 2.2 that we dropped for this study.

Another important topic - one that we did not even touch on here - is the ques-
tion of how to effectively use these metrics to train neural networks, rather than just to
evaluate them, as indicated in the Vignette in Section 5.3. We plan to explore this topic
in a follow-up paper.
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7 Data Availability Statement

The code for metrics and heatmaps will soon be available at https://github.com/
ai2es/sharpness/. It also includes the imagery used for testing here. The only data
not provided are those related to the vignettes (Section 5).
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Appendix A Computational Complexity of Metrics

Throughout this section, we will refer to computational complexity in terms of the
number of pixels in an image (or block) as n. It is important to note that this n grows
as the square of the side length, so to translate these to computational complexity in terms
of a side length ¢, one need only make the substitution n = £2.

Al RMSE

The computational complexity of RMSE is O(n), as the computation

RMSE(X,T) =

involves only n operations.

A2 SSIM

The computational complexity for SSIM for a given window with p points is O(p?),
but because window sizes are typically fixed, and the number of windows grows linearly
with the number of points in an image, the practical complexity is O(n).

The SSIM for a particular pair of windows x and y is given by

(2uapty + €1)(204y + c2)
(13 + g+ e1)(0F + o0+ c2)’
where p, and p, are the input window means, o, and o, are the input window variances,
Oy is the covariance of the input windows, and c¢; and cp are constants. In this com-
putation, computing the means and variances are each O(n) operations, but computing
the covariance of the two windows is a O(n?) operation, as each pair of pixels in the win-
dows must be compared.

SSIM(z, y) =

A3 Total Variation

Total variation involves taking two differences per pixel, and as such is an O(n) op-
eration.

A4 Mean gradient magnitude

Of note for this and following sections, the convolution operation for an image against
a small filter is O(n) complexity. Therefore, the mean gradient magnitude involves two
Sobel filter convolutions (each O(n)), a magnitude computation for each pixel which is
O(n), and computing a mean across the image, which is O(n). Thus, computing mean
gradient magnitude is O(n).

A5 Gradient RMSE

The first step of computing gradient RMSE is computing the gradient magnitude
map for each image, which as discussed in mean gradient magnitude above, is O(n), and
the second step is computing RMSE, which is also O(n). Thus, gradient RMSE is an O(n)
computation.

A6 Gradient Total Variation

Like gradient RMSE, this is the composition of computing a gradient magnitude
map and computing total variation, both of which are O(n) operations, so computing
gradient total variation is also an O(n) operation.
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A7 Laplace RMSE

The Laplacian map is computed by OpenCV via two consecutive applications of
the Sobel filter in both the horizontal and vertical directions (for four total filter con-
volutions), which is still an O(n) operation. As discussed, computing RMSE is an O(n)
operation as well, so computing Laplace RMSE is also an O(n) operation.

A8 Fourier RMSE

Computing the Fourier RMSE involves as a first step computing the 2-dimensional
fast Fourier transform (FFT) of each of the input images. This is a O(nlogn) operation,
and the successive steps (taking the absolute value of the resulting complex-valued spec-
tra, then taking the RMSE) are O(n), so in total, computing Fourier RMSE is an O(nlogn)
operation.

A9 Fourier TV
Much like Fourier RMSE, the bottleneck in computing Fourier TV is computing
the FFT, so Fourier total variation is also O(nlogn).

A10 Spectral Slope

Computing spectral slope involves a number of steps. First, we must compute the
power spectrum (absolute value of the 2D FFT) of the input, which is an O(nlogn) com-
putation. Then, we compute a polar average via coordinate interpolation, which is an
O(n) operation, and find the line of best fit on the log log transform of the resulting \/n/2
points, which is O(y/n), so the total time complexity is O(nlogn).

A1l Wavelet Total Variation

The wavelet decomposition process for finite-dimensional filters (like the Haar wavelets
used in our implementation) is computed in O(n) time, and total variation is (as we know)
O(n), so wavelet total variation can be computed in O(n) time.
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Appendix B Details on Effect of Scaling Intensity
B1 RMSE

The root mean square error between images X and 7' on a common domain D is
given by
RMSE(X,T) = > (X; - T})2
i€D

If we scale X and T by some common factor k, we see that

RMSE(X,T) = |> (kX; — kT})?
i€D

= Z k2(X; —T;)?

i€D

=k Y (Xi—Ti)?
€D

= kRMSE(X, T).

B2 Total Variation
The TV of an image X is given by
TV(X) =Y 1Xi; — Xiga ] +1Xi; — Xijpal-
]

If we scale X by k, we get that
TV(kX) =Y kX ; — kXip1 | + [kXi; — kX 1]
N
=Y kX — Xig gl + kX — Xijial
,J
= kY |Xij = Xoa ]+ 1Xiy — Xi
0,J
=kTV(X).
B3 Mean Gradient Magnitude
The gradient magnitude at a pixel P is given by

I(P) = \/1:(P)* + 1,(P)?,

where I, and I, are directional derivatives. By the linearity of the derivative operator,
I, (kP) = kI, (P) and similarly for I, so

I(kP) = \[I,(EP)? + I,(kP)? = \ /K2, (P)? + k2T, (kP)2 = k\/I,(P)? + I,(P)? = kI(P).

The mean gradient magnitude (grad-mag) is simply the mean of this quantity, and the
mean is a linear operation, so

grad-mag(kX) = k grad-mag(X).

B4 Gradient TV

By what we described in the first part of the above section, the gradient magni-
tude map scales proportional to the scaling of X, and we already know that T'V scales
proportionally, so gradient TV also scales proportionally.
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B5 Gradient RMSE

Similar to the argument for gradient TV, because RMSE scales proportionally, we
know that gradient RMSE scales proportionally.

B6 Laplace RMSE

The Laplacian at a point P is defined as
L(P) = I:cx(P) +Iyy(P)v

where I, is two applications of the horizontal gradient operator, and because the gra-
dient operator is linear, I, (kP) = kI,,(P). Thus, the Laplacian operator is also lin-
ear, so Laplace RMSE will also scale proportionally to the input image scaling.

B7 Fourier RMSE

We note that because the Fourier transform is based on an integral of the input
against a kernel, and we can pull scalar multiplication out of integrals, we have that FFT(kX) =
kFFT(X). Thus, because RMSE scales proportionally, Fourier RMSE also scales pro-
portionally.

B8 Fourier TV

Similarly to Fourier RMSE, because the FFT and TV both scale proportionally to
their input, Fourier TV scales proportionally.

B9 Wavelet TV

The Haar wavelet transform is based on taking directional differences (for the de-
tail coefficients) and averages (for the approximation coefficients) between pixels in an
image, and both differences and averages respect scalar multiplication. Therefore, the
coefficients of the Haar wavelet transform (both detail and approximation) will be scaled
proportionally to the input, and as wavelet TV simply adds all of those coefficients, it
will also be scaled proportionally.
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